This file is indexed.

/usr/include/OGRE/OgreMatrix4.h is in libogre-1.9-dev 1.9.0+dfsg1-7+b4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
    (Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2013 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __Matrix4__
#define __Matrix4__

// Precompiler options
#include "OgrePrerequisites.h"

#include "OgreVector3.h"
#include "OgreMatrix3.h"
#include "OgreVector4.h"
#include "OgrePlane.h"
namespace Ogre
{
	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Math
	*  @{
	*/
	/** Class encapsulating a standard 4x4 homogeneous matrix.
        @remarks
            OGRE uses column vectors when applying matrix multiplications,
            This means a vector is represented as a single column, 4-row
            matrix. This has the effect that the transformations implemented
            by the matrices happens right-to-left e.g. if vector V is to be
            transformed by M1 then M2 then M3, the calculation would be
            M3 * M2 * M1 * V. The order that matrices are concatenated is
            vital since matrix multiplication is not commutative, i.e. you
            can get a different result if you concatenate in the wrong order.
        @par
            The use of column vectors and right-to-left ordering is the
            standard in most mathematical texts, and is the same as used in
            OpenGL. It is, however, the opposite of Direct3D, which has
            inexplicably chosen to differ from the accepted standard and uses
            row vectors and left-to-right matrix multiplication.
        @par
            OGRE deals with the differences between D3D and OpenGL etc.
            internally when operating through different render systems. OGRE
            users only need to conform to standard maths conventions, i.e.
            right-to-left matrix multiplication, (OGRE transposes matrices it
            passes to D3D to compensate).
        @par
            The generic form M * V which shows the layout of the matrix 
            entries is shown below:
            <pre>
                [ m[0][0]  m[0][1]  m[0][2]  m[0][3] ]   {x}
                | m[1][0]  m[1][1]  m[1][2]  m[1][3] | * {y}
                | m[2][0]  m[2][1]  m[2][2]  m[2][3] |   {z}
                [ m[3][0]  m[3][1]  m[3][2]  m[3][3] ]   {1}
            </pre>
    */
    class _OgreExport Matrix4
    {
    protected:
        /// The matrix entries, indexed by [row][col].
        union {
            Real m[4][4];
            Real _m[16];
        };
    public:
        /** Default constructor.
            @note
                It does <b>NOT</b> initialize the matrix for efficiency.
        */
        inline Matrix4()
        {
        }

        inline Matrix4(
            Real m00, Real m01, Real m02, Real m03,
            Real m10, Real m11, Real m12, Real m13,
            Real m20, Real m21, Real m22, Real m23,
            Real m30, Real m31, Real m32, Real m33 )
        {
            m[0][0] = m00;
            m[0][1] = m01;
            m[0][2] = m02;
            m[0][3] = m03;
            m[1][0] = m10;
            m[1][1] = m11;
            m[1][2] = m12;
            m[1][3] = m13;
            m[2][0] = m20;
            m[2][1] = m21;
            m[2][2] = m22;
            m[2][3] = m23;
            m[3][0] = m30;
            m[3][1] = m31;
            m[3][2] = m32;
            m[3][3] = m33;
        }

        /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix.
         */

        inline Matrix4(const Matrix3& m3x3)
        {
          operator=(IDENTITY);
          operator=(m3x3);
        }

        /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion.
         */
        
        inline Matrix4(const Quaternion& rot)
        {
          Matrix3 m3x3;
          rot.ToRotationMatrix(m3x3);
          operator=(IDENTITY);
          operator=(m3x3);
        }
        

		/** Exchange the contents of this matrix with another. 
		*/
		inline void swap(Matrix4& other)
		{
			std::swap(m[0][0], other.m[0][0]);
			std::swap(m[0][1], other.m[0][1]);
			std::swap(m[0][2], other.m[0][2]);
			std::swap(m[0][3], other.m[0][3]);
			std::swap(m[1][0], other.m[1][0]);
			std::swap(m[1][1], other.m[1][1]);
			std::swap(m[1][2], other.m[1][2]);
			std::swap(m[1][3], other.m[1][3]);
			std::swap(m[2][0], other.m[2][0]);
			std::swap(m[2][1], other.m[2][1]);
			std::swap(m[2][2], other.m[2][2]);
			std::swap(m[2][3], other.m[2][3]);
			std::swap(m[3][0], other.m[3][0]);
			std::swap(m[3][1], other.m[3][1]);
			std::swap(m[3][2], other.m[3][2]);
			std::swap(m[3][3], other.m[3][3]);
		}

		inline Real* operator [] ( size_t iRow )
        {
            assert( iRow < 4 );
            return m[iRow];
        }

        inline const Real *operator [] ( size_t iRow ) const
        {
            assert( iRow < 4 );
            return m[iRow];
        }

        inline Matrix4 concatenate(const Matrix4 &m2) const
        {
            Matrix4 r;
            r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0];
            r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1];
            r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2];
            r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3];

            r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0];
            r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1];
            r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2];
            r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3];

            r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0];
            r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1];
            r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2];
            r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3];

            r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0];
            r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1];
            r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2];
            r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3];

            return r;
        }

        /** Matrix concatenation using '*'.
        */
        inline Matrix4 operator * ( const Matrix4 &m2 ) const
        {
            return concatenate( m2 );
        }

        /** Vector transformation using '*'.
            @remarks
                Transforms the given 3-D vector by the matrix, projecting the 
                result back into <i>w</i> = 1.
            @note
                This means that the initial <i>w</i> is considered to be 1.0,
                and then all the tree elements of the resulting 3-D vector are
                divided by the resulting <i>w</i>.
        */
        inline Vector3 operator * ( const Vector3 &v ) const
        {
            Vector3 r;

            Real fInvW = 1.0f / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] );

            r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW;
            r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW;
            r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW;

            return r;
        }
        inline Vector4 operator * (const Vector4& v) const
        {
            return Vector4(
                m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, 
                m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
                m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
                m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w
                );
        }
        inline Plane operator * (const Plane& p) const
        {
            Plane ret;
			Matrix4 invTrans = inverse().transpose();
			Vector4 v4( p.normal.x, p.normal.y, p.normal.z, p.d );
			v4 = invTrans * v4;
			ret.normal.x = v4.x; 
			ret.normal.y = v4.y; 
			ret.normal.z = v4.z;
			ret.d = v4.w / ret.normal.normalise();

            return ret;
        }


        /** Matrix addition.
        */
        inline Matrix4 operator + ( const Matrix4 &m2 ) const
        {
            Matrix4 r;

            r.m[0][0] = m[0][0] + m2.m[0][0];
            r.m[0][1] = m[0][1] + m2.m[0][1];
            r.m[0][2] = m[0][2] + m2.m[0][2];
            r.m[0][3] = m[0][3] + m2.m[0][3];

            r.m[1][0] = m[1][0] + m2.m[1][0];
            r.m[1][1] = m[1][1] + m2.m[1][1];
            r.m[1][2] = m[1][2] + m2.m[1][2];
            r.m[1][3] = m[1][3] + m2.m[1][3];

            r.m[2][0] = m[2][0] + m2.m[2][0];
            r.m[2][1] = m[2][1] + m2.m[2][1];
            r.m[2][2] = m[2][2] + m2.m[2][2];
            r.m[2][3] = m[2][3] + m2.m[2][3];

            r.m[3][0] = m[3][0] + m2.m[3][0];
            r.m[3][1] = m[3][1] + m2.m[3][1];
            r.m[3][2] = m[3][2] + m2.m[3][2];
            r.m[3][3] = m[3][3] + m2.m[3][3];

            return r;
        }

        /** Matrix subtraction.
        */
        inline Matrix4 operator - ( const Matrix4 &m2 ) const
        {
            Matrix4 r;
            r.m[0][0] = m[0][0] - m2.m[0][0];
            r.m[0][1] = m[0][1] - m2.m[0][1];
            r.m[0][2] = m[0][2] - m2.m[0][2];
            r.m[0][3] = m[0][3] - m2.m[0][3];

            r.m[1][0] = m[1][0] - m2.m[1][0];
            r.m[1][1] = m[1][1] - m2.m[1][1];
            r.m[1][2] = m[1][2] - m2.m[1][2];
            r.m[1][3] = m[1][3] - m2.m[1][3];

            r.m[2][0] = m[2][0] - m2.m[2][0];
            r.m[2][1] = m[2][1] - m2.m[2][1];
            r.m[2][2] = m[2][2] - m2.m[2][2];
            r.m[2][3] = m[2][3] - m2.m[2][3];

            r.m[3][0] = m[3][0] - m2.m[3][0];
            r.m[3][1] = m[3][1] - m2.m[3][1];
            r.m[3][2] = m[3][2] - m2.m[3][2];
            r.m[3][3] = m[3][3] - m2.m[3][3];

            return r;
        }

        /** Tests 2 matrices for equality.
        */
        inline bool operator == ( const Matrix4& m2 ) const
        {
            if( 
                m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
                m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
                m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
                m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
                return false;
            return true;
        }

        /** Tests 2 matrices for inequality.
        */
        inline bool operator != ( const Matrix4& m2 ) const
        {
            if( 
                m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
                m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
                m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
                m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
                return true;
            return false;
        }

        /** Assignment from 3x3 matrix.
        */
        inline void operator = ( const Matrix3& mat3 )
        {
            m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2];
            m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2];
            m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2];
        }

        inline Matrix4 transpose(void) const
        {
            return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0],
                           m[0][1], m[1][1], m[2][1], m[3][1],
                           m[0][2], m[1][2], m[2][2], m[3][2],
                           m[0][3], m[1][3], m[2][3], m[3][3]);
        }

        /*
        -----------------------------------------------------------------------
        Translation Transformation
        -----------------------------------------------------------------------
        */
        /** Sets the translation transformation part of the matrix.
        */
        inline void setTrans( const Vector3& v )
        {
            m[0][3] = v.x;
            m[1][3] = v.y;
            m[2][3] = v.z;
        }

        /** Extracts the translation transformation part of the matrix.
         */
        inline Vector3 getTrans() const
        {
          return Vector3(m[0][3], m[1][3], m[2][3]);
        }
        

        /** Builds a translation matrix
        */
        inline void makeTrans( const Vector3& v )
        {
            m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x;
            m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y;
            m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z;
            m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
        }

        inline void makeTrans( Real tx, Real ty, Real tz )
        {
            m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx;
            m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty;
            m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz;
            m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
        }

        /** Gets a translation matrix.
        */
        inline static Matrix4 getTrans( const Vector3& v )
        {
            Matrix4 r;

            r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x;
            r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y;
            r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z;
            r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;

            return r;
        }

        /** Gets a translation matrix - variation for not using a vector.
        */
        inline static Matrix4 getTrans( Real t_x, Real t_y, Real t_z )
        {
            Matrix4 r;

            r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x;
            r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y;
            r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z;
            r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;

            return r;
        }

        /*
        -----------------------------------------------------------------------
        Scale Transformation
        -----------------------------------------------------------------------
        */
        /** Sets the scale part of the matrix.
        */
        inline void setScale( const Vector3& v )
        {
            m[0][0] = v.x;
            m[1][1] = v.y;
            m[2][2] = v.z;
        }

        /** Gets a scale matrix.
        */
        inline static Matrix4 getScale( const Vector3& v )
        {
            Matrix4 r;
            r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
            r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
            r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0;
            r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;

            return r;
        }

        /** Gets a scale matrix - variation for not using a vector.
        */
        inline static Matrix4 getScale( Real s_x, Real s_y, Real s_z )
        {
            Matrix4 r;
            r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
            r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
            r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0;
            r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;

            return r;
        }

        /** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix. 
        @param m3x3 Destination Matrix3
        */
        inline void extract3x3Matrix(Matrix3& m3x3) const
        {
            m3x3.m[0][0] = m[0][0];
            m3x3.m[0][1] = m[0][1];
            m3x3.m[0][2] = m[0][2];
            m3x3.m[1][0] = m[1][0];
            m3x3.m[1][1] = m[1][1];
            m3x3.m[1][2] = m[1][2];
            m3x3.m[2][0] = m[2][0];
            m3x3.m[2][1] = m[2][1];
            m3x3.m[2][2] = m[2][2];

        }

		/** Determines if this matrix involves a scaling. */
		inline bool hasScale() const
		{
			// check magnitude of column vectors (==local axes)
			Real t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0];
			if (!Math::RealEqual(t, 1.0, (Real)1e-04))
				return true;
			t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1];
			if (!Math::RealEqual(t, 1.0, (Real)1e-04))
				return true;
			t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2];
			if (!Math::RealEqual(t, 1.0, (Real)1e-04))
				return true;

			return false;
		}

		/** Determines if this matrix involves a negative scaling. */
		inline bool hasNegativeScale() const
		{
			return determinant() < 0;
		}

		/** Extracts the rotation / scaling part as a quaternion from the Matrix.
         */
        inline Quaternion extractQuaternion() const
        {
          Matrix3 m3x3;
          extract3x3Matrix(m3x3);
          return Quaternion(m3x3);
        }

	static const Matrix4 ZERO;
	static const Matrix4 ZEROAFFINE;
	static const Matrix4 IDENTITY;
        /** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1}
            and inverts the Y. */
        static const Matrix4 CLIPSPACE2DTOIMAGESPACE;

        inline Matrix4 operator*(Real scalar) const
        {
            return Matrix4(
                scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3],
                scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3],
                scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3],
                scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]);
        }

        /** Function for writing to a stream.
        */
        inline _OgreExport friend std::ostream& operator <<
            ( std::ostream& o, const Matrix4& mat )
        {
            o << "Matrix4(";
			for (size_t i = 0; i < 4; ++i)
            {
                o << " row" << (unsigned)i << "{";
                for(size_t j = 0; j < 4; ++j)
                {
                    o << mat[i][j] << " ";
                }
                o << "}";
            }
            o << ")";
            return o;
        }
		
		Matrix4 adjoint() const;
		Real determinant() const;
		Matrix4 inverse() const;

        /** Building a Matrix4 from orientation / scale / position.
        @remarks
            Transform is performed in the order scale, rotate, translation, i.e. translation is independent
            of orientation axes, scale does not affect size of translation, rotation and scaling are always
            centered on the origin.
        */
        void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);

        /** Building an inverse Matrix4 from orientation / scale / position.
        @remarks
            As makeTransform except it build the inverse given the same data as makeTransform, so
            performing -translation, -rotate, 1/scale in that order.
        */
        void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);

        /** Decompose a Matrix4 to orientation / scale / position.
        */
        void decomposition(Vector3& position, Vector3& scale, Quaternion& orientation) const;

        /** Check whether or not the matrix is affine matrix.
            @remarks
                An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1),
                e.g. no projective coefficients.
        */
        inline bool isAffine(void) const
        {
            return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1;
        }

        /** Returns the inverse of the affine matrix.
            @note
                The matrix must be an affine matrix. @see Matrix4::isAffine.
        */
        Matrix4 inverseAffine(void) const;

        /** Concatenate two affine matrices.
            @note
                The matrices must be affine matrix. @see Matrix4::isAffine.
        */
        inline Matrix4 concatenateAffine(const Matrix4 &m2) const
        {
            assert(isAffine() && m2.isAffine());

            return Matrix4(
                m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0],
                m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1],
                m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2],
                m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3],

                m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0],
                m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1],
                m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2],
                m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3],

                m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0],
                m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1],
                m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2],
                m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3],

                0, 0, 0, 1);
        }

        /** 3-D Vector transformation specially for an affine matrix.
            @remarks
                Transforms the given 3-D vector by the matrix, projecting the 
                result back into <i>w</i> = 1.
            @note
                The matrix must be an affine matrix. @see Matrix4::isAffine.
        */
        inline Vector3 transformAffine(const Vector3& v) const
        {
            assert(isAffine());

            return Vector3(
                    m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3], 
                    m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3],
                    m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]);
        }

        /** 4-D Vector transformation specially for an affine matrix.
            @note
                The matrix must be an affine matrix. @see Matrix4::isAffine.
        */
        inline Vector4 transformAffine(const Vector4& v) const
        {
            assert(isAffine());

            return Vector4(
                m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, 
                m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
                m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
                v.w);
        }
    };

    /* Removed from Vector4 and made a non-member here because otherwise
       OgreMatrix4.h and OgreVector4.h have to try to include and inline each 
       other, which frankly doesn't work ;)
   */
    inline Vector4 operator * (const Vector4& v, const Matrix4& mat)
    {
        return Vector4(
            v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0],
            v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1],
            v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2],
            v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3]
            );
    }
	/** @} */
	/** @} */

}
#endif