This file is indexed.

/usr/include/OGRE/OgreQuaternion.h is in libogre-1.9-dev 1.9.0+dfsg1-7+b4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
    (Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2013 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
// This file is based on material originally from:
// Geometric Tools, LLC
// Copyright (c) 1998-2010
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt


#ifndef __Quaternion_H__
#define __Quaternion_H__

#include "OgrePrerequisites.h"
#include "OgreMath.h"

namespace Ogre {

	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Math
	*  @{
	*/
	/** Implementation of a Quaternion, i.e. a rotation around an axis.
		For more information about Quaternions and the theory behind it, we recommend reading:
		http://www.ogre3d.org/tikiwiki/Quaternion+and+Rotation+Primer
		http://www.cprogramming.com/tutorial/3d/quaternions.html
		http://www.gamedev.net/page/resources/_/reference/programming/math-and-physics/
		quaternions/quaternion-powers-r1095
    */
    class _OgreExport Quaternion
    {
    public:
		/// Default constructor, initializes to identity rotation (aka 0°)
		inline Quaternion ()
			: w(1), x(0), y(0), z(0)
		{
		}
		/// Construct from an explicit list of values
		inline Quaternion (
			Real fW,
			Real fX, Real fY, Real fZ)
			: w(fW), x(fX), y(fY), z(fZ)
		{
		}
        /// Construct a quaternion from a rotation matrix
        inline Quaternion(const Matrix3& rot)
        {
            this->FromRotationMatrix(rot);
        }
        /// Construct a quaternion from an angle/axis
        inline Quaternion(const Radian& rfAngle, const Vector3& rkAxis)
        {
            this->FromAngleAxis(rfAngle, rkAxis);
        }
        /// Construct a quaternion from 3 orthonormal local axes
        inline Quaternion(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
        {
            this->FromAxes(xaxis, yaxis, zaxis);
        }
        /// Construct a quaternion from 3 orthonormal local axes
        inline Quaternion(const Vector3* akAxis)
        {
            this->FromAxes(akAxis);
        }
		/// Construct a quaternion from 4 manual w/x/y/z values
		inline Quaternion(Real* valptr)
		{
			memcpy(&w, valptr, sizeof(Real)*4);
		}

		/** Exchange the contents of this quaternion with another. 
		*/
		inline void swap(Quaternion& other)
		{
			std::swap(w, other.w);
			std::swap(x, other.x);
			std::swap(y, other.y);
			std::swap(z, other.z);
		}

		/// Array accessor operator
		inline Real operator [] ( const size_t i ) const
		{
			assert( i < 4 );

			return *(&w+i);
		}

		/// Array accessor operator
		inline Real& operator [] ( const size_t i )
		{
			assert( i < 4 );

			return *(&w+i);
		}

		/// Pointer accessor for direct copying
		inline Real* ptr()
		{
			return &w;
		}

		/// Pointer accessor for direct copying
		inline const Real* ptr() const
		{
			return &w;
		}

		void FromRotationMatrix (const Matrix3& kRot);
        void ToRotationMatrix (Matrix3& kRot) const;
		/** Setups the quaternion using the supplied vector, and "roll" around
			that vector by the specified radians.
		*/
        void FromAngleAxis (const Radian& rfAngle, const Vector3& rkAxis);
        void ToAngleAxis (Radian& rfAngle, Vector3& rkAxis) const;
        inline void ToAngleAxis (Degree& dAngle, Vector3& rkAxis) const {
            Radian rAngle;
            ToAngleAxis ( rAngle, rkAxis );
            dAngle = rAngle;
        }
		/** Constructs the quaternion using 3 axes, the axes are assumed to be orthonormal
			@see FromAxes
		*/
        void FromAxes (const Vector3* akAxis);
        void FromAxes (const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
		/** Gets the 3 orthonormal axes defining the quaternion. @see FromAxes */
        void ToAxes (Vector3* akAxis) const;
        void ToAxes (Vector3& xAxis, Vector3& yAxis, Vector3& zAxis) const;

		/** Returns the X orthonormal axis defining the quaternion. Same as doing
			xAxis = Vector3::UNIT_X * this. Also called the local X-axis
		*/
        Vector3 xAxis(void) const;

        /** Returns the Y orthonormal axis defining the quaternion. Same as doing
			yAxis = Vector3::UNIT_Y * this. Also called the local Y-axis
		*/
        Vector3 yAxis(void) const;

		/** Returns the Z orthonormal axis defining the quaternion. Same as doing
			zAxis = Vector3::UNIT_Z * this. Also called the local Z-axis
		*/
        Vector3 zAxis(void) const;

        inline Quaternion& operator= (const Quaternion& rkQ)
		{
			w = rkQ.w;
			x = rkQ.x;
			y = rkQ.y;
			z = rkQ.z;
			return *this;
		}
        Quaternion operator+ (const Quaternion& rkQ) const;
        Quaternion operator- (const Quaternion& rkQ) const;
        Quaternion operator* (const Quaternion& rkQ) const;
        Quaternion operator* (Real fScalar) const;
        _OgreExport friend Quaternion operator* (Real fScalar,
            const Quaternion& rkQ);
        Quaternion operator- () const;
        inline bool operator== (const Quaternion& rhs) const
		{
			return (rhs.x == x) && (rhs.y == y) &&
				(rhs.z == z) && (rhs.w == w);
		}
        inline bool operator!= (const Quaternion& rhs) const
		{
			return !operator==(rhs);
		}
        // functions of a quaternion
        /// Returns the dot product of the quaternion
        Real Dot (const Quaternion& rkQ) const;
        /* Returns the normal length of this quaternion.
            @note This does <b>not</b> alter any values.
        */
        Real Norm () const;
        /// Normalises this quaternion, and returns the previous length
        Real normalise(void); 
        Quaternion Inverse () const;  /// Apply to non-zero quaternion
        Quaternion UnitInverse () const;  /// Apply to unit-length quaternion
        Quaternion Exp () const;
        Quaternion Log () const;

        /// Rotation of a vector by a quaternion
        Vector3 operator* (const Vector3& rkVector) const;

   		/** Calculate the local roll element of this quaternion.
		@param reprojectAxis By default the method returns the 'intuitive' result
			that is, if you projected the local Y of the quaternion onto the X and
			Y axes, the angle between them is returned. If set to false though, the
			result is the actual yaw that will be used to implement the quaternion,
			which is the shortest possible path to get to the same orientation and 
             may involve less axial rotation.  The co-domain of the returned value is 
             from -180 to 180 degrees.
		*/
		Radian getRoll(bool reprojectAxis = true) const;
   		/** Calculate the local pitch element of this quaternion
		@param reprojectAxis By default the method returns the 'intuitive' result
			that is, if you projected the local Z of the quaternion onto the X and
			Y axes, the angle between them is returned. If set to true though, the
			result is the actual yaw that will be used to implement the quaternion,
			which is the shortest possible path to get to the same orientation and 
            may involve less axial rotation.  The co-domain of the returned value is 
            from -180 to 180 degrees.
		*/
		Radian getPitch(bool reprojectAxis = true) const;
   		/** Calculate the local yaw element of this quaternion
		@param reprojectAxis By default the method returns the 'intuitive' result
			that is, if you projected the local Y of the quaternion onto the X and
			Z axes, the angle between them is returned. If set to true though, the
			result is the actual yaw that will be used to implement the quaternion,
			which is the shortest possible path to get to the same orientation and 
			may involve less axial rotation. The co-domain of the returned value is 
            from -180 to 180 degrees.
		*/
		Radian getYaw(bool reprojectAxis = true) const;		
		/// Equality with tolerance (tolerance is max angle difference)
		bool equals(const Quaternion& rhs, const Radian& tolerance) const;
		
	    /** Performs Spherical linear interpolation between two quaternions, and returns the result.
			Slerp ( 0.0f, A, B ) = A
			Slerp ( 1.0f, A, B ) = B
			@return Interpolated quaternion
			@remarks
			Slerp has the proprieties of performing the interpolation at constant
			velocity, and being torque-minimal (unless shortestPath=false).
			However, it's NOT commutative, which means
			Slerp ( 0.75f, A, B ) != Slerp ( 0.25f, B, A );
			therefore be careful if your code relies in the order of the operands.
			This is specially important in IK animation.
		*/
        static Quaternion Slerp (Real fT, const Quaternion& rkP,
            const Quaternion& rkQ, bool shortestPath = false);

		/** @see Slerp. It adds extra "spins" (i.e. rotates several times) specified
			by parameter 'iExtraSpins' while interpolating before arriving to the
			final values
		*/
        static Quaternion SlerpExtraSpins (Real fT,
            const Quaternion& rkP, const Quaternion& rkQ,
            int iExtraSpins);

        /// Setup for spherical quadratic interpolation
        static void Intermediate (const Quaternion& rkQ0,
            const Quaternion& rkQ1, const Quaternion& rkQ2,
            Quaternion& rka, Quaternion& rkB);

        /// Spherical quadratic interpolation
        static Quaternion Squad (Real fT, const Quaternion& rkP,
            const Quaternion& rkA, const Quaternion& rkB,
            const Quaternion& rkQ, bool shortestPath = false);

        /** Performs Normalised linear interpolation between two quaternions, and returns the result.
			nlerp ( 0.0f, A, B ) = A
			nlerp ( 1.0f, A, B ) = B
			@remarks
			Nlerp is faster than Slerp.
			Nlerp has the proprieties of being commutative (@see Slerp;
			commutativity is desired in certain places, like IK animation), and
			being torque-minimal (unless shortestPath=false). However, it's performing
			the interpolation at non-constant velocity; sometimes this is desired,
			sometimes it is not. Having a non-constant velocity can produce a more
			natural rotation feeling without the need of tweaking the weights; however
			if your scene relies on the timing of the rotation or assumes it will point
			at a specific angle at a specific weight value, Slerp is a better choice.
		*/
        static Quaternion nlerp(Real fT, const Quaternion& rkP, 
            const Quaternion& rkQ, bool shortestPath = false);

        /// Cutoff for sine near zero
        static const Real msEpsilon;

        // special values
        static const Quaternion ZERO;
        static const Quaternion IDENTITY;

		Real w, x, y, z;

		/// Check whether this quaternion contains valid values
		inline bool isNaN() const
		{
			return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w);
		}

        /** Function for writing to a stream. Outputs "Quaternion(w, x, y, z)" with w,x,y,z
            being the member values of the quaternion.
        */
        inline _OgreExport friend std::ostream& operator <<
            ( std::ostream& o, const Quaternion& q )
        {
            o << "Quaternion(" << q.w << ", " << q.x << ", " << q.y << ", " << q.z << ")";
            return o;
        }

    };
	/** @} */
	/** @} */

}




#endif