This file is indexed.

/usr/include/opencv2/contrib/openfabmap.hpp is in libopencv-contrib-dev 2.4.9.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
// This file originates from the openFABMAP project:
// [http://code.google.com/p/openfabmap/]
//
// For published work which uses all or part of OpenFABMAP, please cite:
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
//
// Original Algorithm by Mark Cummins and Paul Newman:
// [http://ijr.sagepub.com/content/27/6/647.short]
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
//
//                           License Agreement
//
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
//                    Will Maddern [w.maddern@qut.edu.au], all rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_OPENFABMAP_H_
#define __OPENCV_OPENFABMAP_H_

#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"

#include <vector>
#include <list>
#include <map>
#include <set>
#include <valarray>

namespace cv {

namespace of2 {

using std::list;
using std::map;
using std::multiset;

/*
    Return data format of a FABMAP compare call
*/
struct CV_EXPORTS IMatch {

    IMatch() :
        queryIdx(-1), imgIdx(-1), likelihood(-DBL_MAX), match(-DBL_MAX) {
    }
    IMatch(int _queryIdx, int _imgIdx, double _likelihood, double _match) :
        queryIdx(_queryIdx), imgIdx(_imgIdx), likelihood(_likelihood), match(
                _match) {
    }

    int queryIdx;    //query index
    int imgIdx;      //test index

    double likelihood;  //raw loglikelihood
    double match;      //normalised probability

    bool operator<(const IMatch& m) const {
        return match < m.match;
    }

};

/*
    Base FabMap class. Each FabMap method inherits from this class.
*/
class CV_EXPORTS FabMap {
public:

    //FabMap options
    enum {
        MEAN_FIELD = 1,
        SAMPLED = 2,
        NAIVE_BAYES = 4,
        CHOW_LIU = 8,
        MOTION_MODEL = 16
    };

    FabMap(const Mat& clTree, double PzGe, double PzGNe, int flags,
            int numSamples = 0);
    virtual ~FabMap();

    //methods to add training data for sampling method
    virtual void addTraining(const Mat& queryImgDescriptor);
    virtual void addTraining(const vector<Mat>& queryImgDescriptors);

    //methods to add to the test data
    virtual void add(const Mat& queryImgDescriptor);
    virtual void add(const vector<Mat>& queryImgDescriptors);

    //accessors
    const vector<Mat>& getTrainingImgDescriptors() const;
    const vector<Mat>& getTestImgDescriptors() const;

    //Main FabMap image comparison
    void compare(const Mat& queryImgDescriptor,
            vector<IMatch>& matches, bool addQuery = false,
            const Mat& mask = Mat());
    void compare(const Mat& queryImgDescriptor,
            const Mat& testImgDescriptors, vector<IMatch>& matches,
            const Mat& mask = Mat());
    void compare(const Mat& queryImgDescriptor,
            const vector<Mat>& testImgDescriptors,
            vector<IMatch>& matches, const Mat& mask = Mat());
    void compare(const vector<Mat>& queryImgDescriptors, vector<
            IMatch>& matches, bool addQuery = false, const Mat& mask =
            Mat());
    void compare(const vector<Mat>& queryImgDescriptors,
            const vector<Mat>& testImgDescriptors,
            vector<IMatch>& matches, const Mat& mask = Mat());

protected:

    void compareImgDescriptor(const Mat& queryImgDescriptor,
            int queryIndex, const vector<Mat>& testImgDescriptors,
            vector<IMatch>& matches);

    void addImgDescriptor(const Mat& queryImgDescriptor);

    //the getLikelihoods method is overwritten for each different FabMap
    //method.
    virtual void getLikelihoods(const Mat& queryImgDescriptor,
            const vector<Mat>& testImgDescriptors,
            vector<IMatch>& matches);
    virtual double getNewPlaceLikelihood(const Mat& queryImgDescriptor);

    //turn likelihoods into probabilities (also add in motion model if used)
    void normaliseDistribution(vector<IMatch>& matches);

    //Chow-Liu Tree
    int pq(int q);
    double Pzq(int q, bool zq);
    double PzqGzpq(int q, bool zq, bool zpq);

    //FAB-MAP Core
    double PzqGeq(bool zq, bool eq);
    double PeqGL(int q, bool Lzq, bool eq);
    double PzqGL(int q, bool zq, bool zpq, bool Lzq);
    double PzqGzpqL(int q, bool zq, bool zpq, bool Lzq);
    double (FabMap::*PzGL)(int q, bool zq, bool zpq, bool Lzq);

    //data
    Mat clTree;
    vector<Mat> trainingImgDescriptors;
    vector<Mat> testImgDescriptors;
    vector<IMatch> priorMatches;

    //parameters
    double PzGe;
    double PzGNe;
    double Pnew;

    double mBias;
    double sFactor;

    int flags;
    int numSamples;

};

/*
    The original FAB-MAP algorithm, developed based on:
    http://ijr.sagepub.com/content/27/6/647.short
*/
class CV_EXPORTS FabMap1: public FabMap {
public:
    FabMap1(const Mat& clTree, double PzGe, double PzGNe, int flags,
            int numSamples = 0);
    virtual ~FabMap1();
protected:

    //FabMap1 implementation of likelihood comparison
    void getLikelihoods(const Mat& queryImgDescriptor, const vector<
            Mat>& testImgDescriptors, vector<IMatch>& matches);
};

/*
    A computationally faster version of the original FAB-MAP algorithm. A look-
    up-table is used to precompute many of the reoccuring calculations
*/
class CV_EXPORTS FabMapLUT: public FabMap {
public:
    FabMapLUT(const Mat& clTree, double PzGe, double PzGNe,
            int flags, int numSamples = 0, int precision = 6);
    virtual ~FabMapLUT();
protected:

    //FabMap look-up-table implementation of the likelihood comparison
    void getLikelihoods(const Mat& queryImgDescriptor, const vector<
            Mat>& testImgDescriptors, vector<IMatch>& matches);

    //precomputed data
    int (*table)[8];

    //data precision
    int precision;
};

/*
    The Accelerated FAB-MAP algorithm, developed based on:
    http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942
*/
class CV_EXPORTS FabMapFBO: public FabMap {
public:
    FabMapFBO(const Mat& clTree, double PzGe, double PzGNe, int flags,
            int numSamples = 0, double rejectionThreshold = 1e-8, double PsGd =
                    1e-8, int bisectionStart = 512, int bisectionIts = 9);
    virtual ~FabMapFBO();

protected:

    //FabMap Fast Bail-out implementation of the likelihood comparison
    void getLikelihoods(const Mat& queryImgDescriptor, const vector<
            Mat>& testImgDescriptors, vector<IMatch>& matches);

    //stucture used to determine word comparison order
    struct WordStats {
        WordStats() :
            q(0), info(0), V(0), M(0) {
        }

        WordStats(int _q, double _info) :
            q(_q), info(_info), V(0), M(0) {
        }

        int q;
        double info;
        mutable double V;
        mutable double M;

        bool operator<(const WordStats& w) const {
            return info < w.info;
        }

    };

    //private fast bail-out necessary functions
    void setWordStatistics(const Mat& queryImgDescriptor, multiset<WordStats>& wordData);
    double limitbisection(double v, double m);
    double bennettInequality(double v, double m, double delta);
    static bool compInfo(const WordStats& first, const WordStats& second);

    //parameters
    double PsGd;
    double rejectionThreshold;
    int bisectionStart;
    int bisectionIts;
};

/*
    The FAB-MAP2.0 algorithm, developed based on:
    http://ijr.sagepub.com/content/30/9/1100.abstract
*/
class CV_EXPORTS FabMap2: public FabMap {
public:

    FabMap2(const Mat& clTree, double PzGe, double PzGNe, int flags);
    virtual ~FabMap2();

    //FabMap2 builds the inverted index and requires an additional training/test
    //add function
    void addTraining(const Mat& queryImgDescriptors) {
        FabMap::addTraining(queryImgDescriptors);
    }
    void addTraining(const vector<Mat>& queryImgDescriptors);

    void add(const Mat& queryImgDescriptors) {
        FabMap::add(queryImgDescriptors);
    }
    void add(const vector<Mat>& queryImgDescriptors);

protected:

    //FabMap2 implementation of the likelihood comparison
    void getLikelihoods(const Mat& queryImgDescriptor, const vector<
            Mat>& testImgDescriptors, vector<IMatch>& matches);
    double getNewPlaceLikelihood(const Mat& queryImgDescriptor);

    //the likelihood function using the inverted index
    void getIndexLikelihoods(const Mat& queryImgDescriptor, vector<
                             double>& defaults, map<int, vector<int> >& invertedMap,
            vector<IMatch>& matches);
    void addToIndex(const Mat& queryImgDescriptor,
            vector<double>& defaults,
            map<int, vector<int> >& invertedMap);

    //data
    vector<double> d1, d2, d3, d4;
    vector<vector<int> > children;

    // TODO: inverted map a vector?

    vector<double> trainingDefaults;
    map<int, vector<int> > trainingInvertedMap;

    vector<double> testDefaults;
    map<int, vector<int> > testInvertedMap;

};
/*
    A Chow-Liu tree is required by FAB-MAP. The Chow-Liu tree provides an
    estimate of the full distribution of visual words using a minimum spanning
    tree. The tree is generated through training data.
*/
class CV_EXPORTS ChowLiuTree {
public:
    ChowLiuTree();
    virtual ~ChowLiuTree();

    //add data to the chow-liu tree before calling make
    void add(const Mat& imgDescriptor);
    void add(const vector<Mat>& imgDescriptors);

    const vector<Mat>& getImgDescriptors() const;

    Mat make(double infoThreshold = 0.0);

private:
    vector<Mat> imgDescriptors;
    Mat mergedImgDescriptors;

    typedef struct info {
        float score;
        short word1;
        short word2;
    } info;

    //probabilities extracted from mergedImgDescriptors
    double P(int a, bool za);
    double JP(int a, bool za, int b, bool zb); //a & b
    double CP(int a, bool za, int b, bool zb); // a | b

    //calculating mutual information of all edges
    void createBaseEdges(list<info>& edges, double infoThreshold);
    double calcMutInfo(int word1, int word2);
    static bool sortInfoScores(const info& first, const info& second);

    //selecting minimum spanning egdges with maximum information
    bool reduceEdgesToMinSpan(list<info>& edges);

    //building the tree sctructure
    Mat buildTree(int root_word, list<info> &edges);
    void recAddToTree(Mat &cltree, int q, int pq,
        list<info> &remaining_edges);
    vector<int> extractChildren(list<info> &remaining_edges, int q);

};

/*
    A custom vocabulary training method based on:
    http://www.springerlink.com/content/d1h6j8x552532003/
*/
class CV_EXPORTS BOWMSCTrainer: public BOWTrainer {
public:
    BOWMSCTrainer(double clusterSize = 0.4);
    virtual ~BOWMSCTrainer();

    // Returns trained vocabulary (i.e. cluster centers).
    virtual Mat cluster() const;
    virtual Mat cluster(const Mat& descriptors) const;

protected:

    double clusterSize;

};

}

}

#endif /* OPENFABMAP_H_ */