This file is indexed.

/usr/include/opencv2/features2d/features2d.hpp is in libopencv-features2d-dev 2.4.9.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_FEATURES_2D_HPP__
#define __OPENCV_FEATURES_2D_HPP__

#include "opencv2/core/core.hpp"
#include "opencv2/flann/miniflann.hpp"

#ifdef __cplusplus
#include <limits>

namespace cv
{

CV_EXPORTS bool initModule_features2d();

/*!
 The Keypoint Class

 The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as
 Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc.

 The keypoint is characterized by the 2D position, scale
 (proportional to the diameter of the neighborhood that needs to be taken into account),
 orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor
 (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using
 cv::KDTree or another method.
*/
class CV_EXPORTS_W_SIMPLE KeyPoint
{
public:
    //! the default constructor
    CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
    //! the full constructor
    KeyPoint(Point2f _pt, float _size, float _angle=-1,
            float _response=0, int _octave=0, int _class_id=-1)
            : pt(_pt), size(_size), angle(_angle),
            response(_response), octave(_octave), class_id(_class_id) {}
    //! another form of the full constructor
    CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1,
            float _response=0, int _octave=0, int _class_id=-1)
            : pt(x, y), size(_size), angle(_angle),
            response(_response), octave(_octave), class_id(_class_id) {}

    size_t hash() const;

    //! converts vector of keypoints to vector of points
    static void convert(const vector<KeyPoint>& keypoints,
                        CV_OUT vector<Point2f>& points2f,
                        const vector<int>& keypointIndexes=vector<int>());
    //! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation
    static void convert(const vector<Point2f>& points2f,
                        CV_OUT vector<KeyPoint>& keypoints,
                        float size=1, float response=1, int octave=0, int class_id=-1);

    //! computes overlap for pair of keypoints;
    //! overlap is a ratio between area of keypoint regions intersection and
    //! area of keypoint regions union (now keypoint region is circle)
    static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);

    CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
    CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood
    CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable);
                            //!< it's in [0,360) degrees and measured relative to
                            //!< image coordinate system, ie in clockwise.
    CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
    CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
    CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
};

//! writes vector of keypoints to the file storage
CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
//! reads vector of keypoints from the specified file storage node
CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);

/*
 * A class filters a vector of keypoints.
 * Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class,
 * it has only several needed by now static methods.
 */
class CV_EXPORTS KeyPointsFilter
{
public:
    KeyPointsFilter(){}

    /*
     * Remove keypoints within borderPixels of an image edge.
     */
    static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
    /*
     * Remove keypoints of sizes out of range.
     */
    static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize,
                                   float maxSize=FLT_MAX );
    /*
     * Remove keypoints from some image by mask for pixels of this image.
     */
    static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask );
    /*
     * Remove duplicated keypoints.
     */
    static void removeDuplicated( vector<KeyPoint>& keypoints );

    /*
     * Retain the specified number of the best keypoints (according to the response)
     */
    static void retainBest( vector<KeyPoint>& keypoints, int npoints );
};


/************************************ Base Classes ************************************/

/*
 * Abstract base class for 2D image feature detectors.
 */
class CV_EXPORTS_W FeatureDetector : public virtual Algorithm
{
public:
    virtual ~FeatureDetector();

    /*
     * Detect keypoints in an image.
     * image        The image.
     * keypoints    The detected keypoints.
     * mask         Mask specifying where to look for keypoints (optional). Must be a char
     *              matrix with non-zero values in the region of interest.
     */
    CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    /*
     * Detect keypoints in an image set.
     * images       Image collection.
     * keypoints    Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
     * masks        Masks for image set. masks[i] is a mask for images[i].
     */
    void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;

    // Return true if detector object is empty
    CV_WRAP virtual bool empty() const;

    // Create feature detector by detector name.
    CV_WRAP static Ptr<FeatureDetector> create( const string& detectorType );

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;

    /*
     * Remove keypoints that are not in the mask.
     * Helper function, useful when wrapping a library call for keypoint detection that
     * does not support a mask argument.
     */
    static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints );
};


/*
 * Abstract base class for computing descriptors for image keypoints.
 *
 * In this interface we assume a keypoint descriptor can be represented as a
 * dense, fixed-dimensional vector of some basic type. Most descriptors used
 * in practice follow this pattern, as it makes it very easy to compute
 * distances between descriptors. Therefore we represent a collection of
 * descriptors as a Mat, where each row is one keypoint descriptor.
 */
class CV_EXPORTS_W DescriptorExtractor : public virtual Algorithm
{
public:
    virtual ~DescriptorExtractor();

    /*
     * Compute the descriptors for a set of keypoints in an image.
     * image        The image.
     * keypoints    The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
     * descriptors  Copmputed descriptors. Row i is the descriptor for keypoint i.
     */
    CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;

    /*
     * Compute the descriptors for a keypoints collection detected in image collection.
     * images       Image collection.
     * keypoints    Input keypoints collection. keypoints[i] is keypoints detected in images[i].
     *              Keypoints for which a descriptor cannot be computed are removed.
     * descriptors  Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
     */
    void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;

    CV_WRAP virtual int descriptorSize() const = 0;
    CV_WRAP virtual int descriptorType() const = 0;

    CV_WRAP virtual bool empty() const;

    CV_WRAP static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0;

    /*
     * Remove keypoints within borderPixels of an image edge.
     */
    static void removeBorderKeypoints( vector<KeyPoint>& keypoints,
                                      Size imageSize, int borderSize );
};



/*
 * Abstract base class for simultaneous 2D feature detection descriptor extraction.
 */
class CV_EXPORTS_W Feature2D : public FeatureDetector, public DescriptorExtractor
{
public:
    /*
     * Detect keypoints in an image.
     * image        The image.
     * keypoints    The detected keypoints.
     * mask         Mask specifying where to look for keypoints (optional). Must be a char
     *              matrix with non-zero values in the region of interest.
     * useProvidedKeypoints If true, the method will skip the detection phase and will compute
     *                      descriptors for the provided keypoints
     */
    CV_WRAP_AS(detectAndCompute) virtual void operator()( InputArray image, InputArray mask,
                                     CV_OUT vector<KeyPoint>& keypoints,
                                     OutputArray descriptors,
                                     bool useProvidedKeypoints=false ) const = 0;

    CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;

    // Create feature detector and descriptor extractor by name.
    CV_WRAP static Ptr<Feature2D> create( const string& name );
};

/*!
  BRISK implementation
*/
class CV_EXPORTS_W BRISK : public Feature2D
{
public:
    CV_WRAP explicit BRISK(int thresh=30, int octaves=3, float patternScale=1.0f);

    virtual ~BRISK();

    // returns the descriptor size in bytes
    int descriptorSize() const;
    // returns the descriptor type
    int descriptorType() const;

    // Compute the BRISK features on an image
    void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;

    // Compute the BRISK features and descriptors on an image
    void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                      OutputArray descriptors, bool useProvidedKeypoints=false ) const;

    AlgorithmInfo* info() const;

    // custom setup
    CV_WRAP explicit BRISK(std::vector<float> &radiusList, std::vector<int> &numberList,
        float dMax=5.85f, float dMin=8.2f, std::vector<int> indexChange=std::vector<int>());

    // call this to generate the kernel:
    // circle of radius r (pixels), with n points;
    // short pairings with dMax, long pairings with dMin
    CV_WRAP void generateKernel(std::vector<float> &radiusList,
        std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
        std::vector<int> indexChange=std::vector<int>());

protected:

    void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    void computeKeypointsNoOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
    void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                                       OutputArray descriptors, bool doDescriptors, bool doOrientation,
                                       bool useProvidedKeypoints) const;

    // Feature parameters
    CV_PROP_RW int threshold;
    CV_PROP_RW int octaves;

    // some helper structures for the Brisk pattern representation
    struct BriskPatternPoint{
        float x;         // x coordinate relative to center
        float y;         // x coordinate relative to center
        float sigma;     // Gaussian smoothing sigma
    };
    struct BriskShortPair{
        unsigned int i;  // index of the first pattern point
        unsigned int j;  // index of other pattern point
    };
    struct BriskLongPair{
        unsigned int i;  // index of the first pattern point
        unsigned int j;  // index of other pattern point
        int weighted_dx; // 1024.0/dx
        int weighted_dy; // 1024.0/dy
    };
    inline int smoothedIntensity(const cv::Mat& image,
                const cv::Mat& integral,const float key_x,
                const float key_y, const unsigned int scale,
                const unsigned int rot, const unsigned int point) const;
    // pattern properties
    BriskPatternPoint* patternPoints_;     //[i][rotation][scale]
    unsigned int points_;                 // total number of collocation points
    float* scaleList_;                     // lists the scaling per scale index [scale]
    unsigned int* sizeList_;             // lists the total pattern size per scale index [scale]
    static const unsigned int scales_;    // scales discretization
    static const float scalerange_;     // span of sizes 40->4 Octaves - else, this needs to be adjusted...
    static const unsigned int n_rot_;    // discretization of the rotation look-up

    // pairs
    int strings_;                        // number of uchars the descriptor consists of
    float dMax_;                         // short pair maximum distance
    float dMin_;                         // long pair maximum distance
    BriskShortPair* shortPairs_;         // d<_dMax
    BriskLongPair* longPairs_;             // d>_dMin
    unsigned int noShortPairs_;         // number of shortParis
    unsigned int noLongPairs_;             // number of longParis

    // general
    static const float basicSize_;
};


/*!
 ORB implementation.
*/
class CV_EXPORTS_W ORB : public Feature2D
{
public:
    // the size of the signature in bytes
    enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };

    CV_WRAP explicit ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31,
        int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31 );

    // returns the descriptor size in bytes
    int descriptorSize() const;
    // returns the descriptor type
    int descriptorType() const;

    // Compute the ORB features and descriptors on an image
    void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;

    // Compute the ORB features and descriptors on an image
    void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                     OutputArray descriptors, bool useProvidedKeypoints=false ) const;

    AlgorithmInfo* info() const;

protected:

    void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    CV_PROP_RW int nfeatures;
    CV_PROP_RW double scaleFactor;
    CV_PROP_RW int nlevels;
    CV_PROP_RW int edgeThreshold;
    CV_PROP_RW int firstLevel;
    CV_PROP_RW int WTA_K;
    CV_PROP_RW int scoreType;
    CV_PROP_RW int patchSize;
};

typedef ORB OrbFeatureDetector;
typedef ORB OrbDescriptorExtractor;

/*!
  FREAK implementation
*/
class CV_EXPORTS FREAK : public DescriptorExtractor
{
public:
    /** Constructor
         * @param orientationNormalized enable orientation normalization
         * @param scaleNormalized enable scale normalization
         * @param patternScale scaling of the description pattern
         * @param nbOctave number of octaves covered by the detected keypoints
         * @param selectedPairs (optional) user defined selected pairs
    */
    explicit FREAK( bool orientationNormalized = true,
           bool scaleNormalized = true,
           float patternScale = 22.0f,
           int nOctaves = 4,
           const vector<int>& selectedPairs = vector<int>());
    FREAK( const FREAK& rhs );
    FREAK& operator=( const FREAK& );

    virtual ~FREAK();

    /** returns the descriptor length in bytes */
    virtual int descriptorSize() const;

    /** returns the descriptor type */
    virtual int descriptorType() const;

    /** select the 512 "best description pairs"
         * @param images grayscale images set
         * @param keypoints set of detected keypoints
         * @param corrThresh correlation threshold
         * @param verbose print construction information
         * @return list of best pair indexes
    */
    vector<int> selectPairs( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints,
                      const double corrThresh = 0.7, bool verbose = true );

    AlgorithmInfo* info() const;

    enum
    {
        NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45
    };

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void buildPattern();
    uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y,
                         const unsigned int scale, const unsigned int rot, const unsigned int point ) const;

    bool orientationNormalized; //true if the orientation is normalized, false otherwise
    bool scaleNormalized; //true if the scale is normalized, false otherwise
    double patternScale; //scaling of the pattern
    int nOctaves; //number of octaves
    bool extAll; // true if all pairs need to be extracted for pairs selection

    double patternScale0;
    int nOctaves0;
    vector<int> selectedPairs0;

    struct PatternPoint
    {
        float x; // x coordinate relative to center
        float y; // x coordinate relative to center
        float sigma; // Gaussian smoothing sigma
    };

    struct DescriptionPair
    {
        uchar i; // index of the first point
        uchar j; // index of the second point
    };

    struct OrientationPair
    {
        uchar i; // index of the first point
        uchar j; // index of the second point
        int weight_dx; // dx/(norm_sq))*4096
        int weight_dy; // dy/(norm_sq))*4096
    };

    vector<PatternPoint> patternLookup; // look-up table for the pattern points (position+sigma of all points at all scales and orientation)
    int patternSizes[NB_SCALES]; // size of the pattern at a specific scale (used to check if a point is within image boundaries)
    DescriptionPair descriptionPairs[NB_PAIRS];
    OrientationPair orientationPairs[NB_ORIENPAIRS];
};


/*!
 Maximal Stable Extremal Regions class.

 The class implements MSER algorithm introduced by J. Matas.
 Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector,
 not the salient point detector.

 It returns the regions, each of those is encoded as a contour.
*/
class CV_EXPORTS_W MSER : public FeatureDetector
{
public:
    //! the full constructor
    CV_WRAP explicit MSER( int _delta=5, int _min_area=60, int _max_area=14400,
          double _max_variation=0.25, double _min_diversity=.2,
          int _max_evolution=200, double _area_threshold=1.01,
          double _min_margin=0.003, int _edge_blur_size=5 );

    //! the operator that extracts the MSERs from the image or the specific part of it
    CV_WRAP_AS(detect) void operator()( const Mat& image, CV_OUT vector<vector<Point> >& msers,
                                        const Mat& mask=Mat() ) const;
    AlgorithmInfo* info() const;

protected:
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int delta;
    int minArea;
    int maxArea;
    double maxVariation;
    double minDiversity;
    int maxEvolution;
    double areaThreshold;
    double minMargin;
    int edgeBlurSize;
};

typedef MSER MserFeatureDetector;

/*!
 The "Star" Detector.

 The class implements the keypoint detector introduced by K. Konolige.
*/
class CV_EXPORTS_W StarDetector : public FeatureDetector
{
public:
    //! the full constructor
    CV_WRAP StarDetector(int _maxSize=45, int _responseThreshold=30,
                 int _lineThresholdProjected=10,
                 int _lineThresholdBinarized=8,
                 int _suppressNonmaxSize=5);

    //! finds the keypoints in the image
    CV_WRAP_AS(detect) void operator()(const Mat& image,
                CV_OUT vector<KeyPoint>& keypoints) const;

    AlgorithmInfo* info() const;

protected:
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int maxSize;
    int responseThreshold;
    int lineThresholdProjected;
    int lineThresholdBinarized;
    int suppressNonmaxSize;
};

//! detects corners using FAST algorithm by E. Rosten
CV_EXPORTS void FAST( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
                      int threshold, bool nonmaxSuppression=true );

CV_EXPORTS void FASTX( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
                      int threshold, bool nonmaxSuppression, int type );

class CV_EXPORTS_W FastFeatureDetector : public FeatureDetector
{
public:

    enum
    { // Define it in old class to simplify migration to 2.5
      TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
    };

    CV_WRAP FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int threshold;
    bool nonmaxSuppression;
};


class CV_EXPORTS_W GFTTDetector : public FeatureDetector
{
public:
    CV_WRAP GFTTDetector( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
                          int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int nfeatures;
    double qualityLevel;
    double minDistance;
    int blockSize;
    bool useHarrisDetector;
    double k;
};

typedef GFTTDetector GoodFeaturesToTrackDetector;
typedef StarDetector StarFeatureDetector;

class CV_EXPORTS_W SimpleBlobDetector : public FeatureDetector
{
public:
  struct CV_EXPORTS_W_SIMPLE Params
  {
      CV_WRAP Params();
      CV_PROP_RW float thresholdStep;
      CV_PROP_RW float minThreshold;
      CV_PROP_RW float maxThreshold;
      CV_PROP_RW size_t minRepeatability;
      CV_PROP_RW float minDistBetweenBlobs;

      CV_PROP_RW bool filterByColor;
      CV_PROP_RW uchar blobColor;

      CV_PROP_RW bool filterByArea;
      CV_PROP_RW float minArea, maxArea;

      CV_PROP_RW bool filterByCircularity;
      CV_PROP_RW float minCircularity, maxCircularity;

      CV_PROP_RW bool filterByInertia;
      CV_PROP_RW float minInertiaRatio, maxInertiaRatio;

      CV_PROP_RW bool filterByConvexity;
      CV_PROP_RW float minConvexity, maxConvexity;

      void read( const FileNode& fn );
      void write( FileStorage& fs ) const;
  };

  CV_WRAP SimpleBlobDetector(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());

  virtual void read( const FileNode& fn );
  virtual void write( FileStorage& fs ) const;

protected:
  struct CV_EXPORTS Center
  {
      Point2d location;
      double radius;
      double confidence;
  };

  virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
  virtual void findBlobs(const Mat &image, const Mat &binaryImage, vector<Center> &centers) const;

  Params params;
  AlgorithmInfo* info() const;
};


class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
{
public:
    explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
                                   float featureScaleMul=0.1f,
                                   int initXyStep=6, int initImgBound=0,
                                   bool varyXyStepWithScale=true,
                                   bool varyImgBoundWithScale=false );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double initFeatureScale;
    int featureScaleLevels;
    double featureScaleMul;

    int initXyStep;
    int initImgBound;

    bool varyXyStepWithScale;
    bool varyImgBoundWithScale;
};

/*
 * Adapts a detector to partition the source image into a grid and detect
 * points in each cell.
 */
class CV_EXPORTS_W GridAdaptedFeatureDetector : public FeatureDetector
{
public:
    /*
     * detector            Detector that will be adapted.
     * maxTotalKeypoints   Maximum count of keypoints detected on the image. Only the strongest keypoints
     *                      will be keeped.
     * gridRows            Grid rows count.
     * gridCols            Grid column count.
     */
    CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=0,
                                        int maxTotalKeypoints=1000,
                                        int gridRows=4, int gridCols=4 );

    // TODO implement read/write
    virtual bool empty() const;

    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    Ptr<FeatureDetector> detector;
    int maxTotalKeypoints;
    int gridRows;
    int gridCols;
};

/*
 * Adapts a detector to detect points over multiple levels of a Gaussian
 * pyramid. Useful for detectors that are not inherently scaled.
 */
class CV_EXPORTS_W PyramidAdaptedFeatureDetector : public FeatureDetector
{
public:
    // maxLevel - The 0-based index of the last pyramid layer
    CV_WRAP PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 );

    // TODO implement read/write
    virtual bool empty() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    Ptr<FeatureDetector> detector;
    int maxLevel;
};

/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector
 *  and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
 */
class CV_EXPORTS AdjusterAdapter: public FeatureDetector
{
public:
    /** pure virtual interface
     */
    virtual ~AdjusterAdapter() {}
    /** too few features were detected so, adjust the detector params accordingly
     * \param min the minimum number of desired features
     * \param n_detected the number previously detected
     */
    virtual void tooFew(int min, int n_detected) = 0;
    /** too many features were detected so, adjust the detector params accordingly
     * \param max the maximum number of desired features
     * \param n_detected the number previously detected
     */
    virtual void tooMany(int max, int n_detected) = 0;
    /** are params maxed out or still valid?
     * \return false if the parameters can't be adjusted any more
     */
    virtual bool good() const = 0;

    virtual Ptr<AdjusterAdapter> clone() const = 0;

    static Ptr<AdjusterAdapter> create( const string& detectorType );
};
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
 * of features are detected.
 *  Beware that this is not thread safe - as the adjustment of parameters breaks the const
 *  of the detection routine...
 *  /TODO Make this const correct and thread safe
 *
 *  sample usage:
 //will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run
 //FAST feature detection 10 times until that number of keypoints are found
 Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10));

 */
class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector
{
public:

    /** \param adjuster an AdjusterAdapter that will do the detection and parameter adjustment
     *  \param max_features the maximum desired number of features
     *  \param max_iters the maximum number of times to try to adjust the feature detector params
     *          for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
     *  \param min_features the minimum desired features
     */
    DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 );

    virtual bool empty() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

private:
    DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&);
    DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&);

    int escape_iters_;
    int min_features_, max_features_;
    const Ptr<AdjusterAdapter> adjuster_;
};

/**\brief an adjust for the FAST detector. This will basically decrement or increment the
 * threshold by 1
 */
class CV_EXPORTS FastAdjuster: public AdjusterAdapter
{
public:
    /**\param init_thresh the initial threshold to start with, default = 20
     * \param nonmax whether to use non max or not for fast feature detection
     */
    FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200);

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int thresh_;
    bool nonmax_;
    int init_thresh_, min_thresh_, max_thresh_;
};


/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now
 * TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams
 */
class CV_EXPORTS StarAdjuster: public AdjusterAdapter
{
public:
    StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.);

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double thresh_, init_thresh_, min_thresh_, max_thresh_;
};

class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
{
public:
    SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double thresh_, init_thresh_, min_thresh_, max_thresh_;
};

CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
                                     float maxDeltaX, float maxDeltaY );



/*
 * OpponentColorDescriptorExtractor
 *
 * Adapts a descriptor extractor to compute descripors in Opponent Color Space
 * (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition").
 * Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor
 * (set in constructor) computes descriptors on each of the three channel and concatenate
 * them into a single color descriptor.
 */
class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor
{
public:
    OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor );

    virtual void read( const FileNode& );
    virtual void write( FileStorage& ) const;

    virtual int descriptorSize() const;
    virtual int descriptorType() const;

    virtual bool empty() const;

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;

    Ptr<DescriptorExtractor> descriptorExtractor;
};

/*
 * BRIEF Descriptor
 */
class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
{
public:
    static const int PATCH_SIZE = 48;
    static const int KERNEL_SIZE = 9;

    // bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
    BriefDescriptorExtractor( int bytes = 32 );

    virtual void read( const FileNode& );
    virtual void write( FileStorage& ) const;

    virtual int descriptorSize() const;
    virtual int descriptorType() const;

    /// @todo read and write for brief

    AlgorithmInfo* info() const;

protected:
    virtual void computeImpl(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const;

    typedef void(*PixelTestFn)(const Mat&, const vector<KeyPoint>&, Mat&);

    int bytes_;
    PixelTestFn test_fn_;
};


/****************************************************************************************\
*                                      Distance                                          *
\****************************************************************************************/

template<typename T>
struct CV_EXPORTS Accumulator
{
    typedef T Type;
};

template<> struct Accumulator<unsigned char>  { typedef float Type; };
template<> struct Accumulator<unsigned short> { typedef float Type; };
template<> struct Accumulator<char>   { typedef float Type; };
template<> struct Accumulator<short>  { typedef float Type; };

/*
 * Squared Euclidean distance functor
 */
template<class T>
struct CV_EXPORTS SL2
{
    enum { normType = NORM_L2SQR };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return normL2Sqr<ValueType, ResultType>(a, b, size);
    }
};

/*
 * Euclidean distance functor
 */
template<class T>
struct CV_EXPORTS L2
{
    enum { normType = NORM_L2 };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
    }
};

/*
 * Manhattan distance (city block distance) functor
 */
template<class T>
struct CV_EXPORTS L1
{
    enum { normType = NORM_L1 };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return normL1<ValueType, ResultType>(a, b, size);
    }
};

/*
 * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
 * bit count of A exclusive XOR'ed with B
 */
struct CV_EXPORTS Hamming
{
    enum { normType = NORM_HAMMING };
    typedef unsigned char ValueType;
    typedef int ResultType;

    /** this will count the bits in a ^ b
     */
    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
    {
        return normHamming(a, b, size);
    }
};

typedef Hamming HammingLUT;

template<int cellsize> struct HammingMultilevel
{
    enum { normType = NORM_HAMMING + (cellsize>1) };
    typedef unsigned char ValueType;
    typedef int ResultType;

    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
    {
        return normHamming(a, b, size, cellsize);
    }
};

/****************************************************************************************\
*                                      DMatch                                            *
\****************************************************************************************/
/*
 * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
 */
struct CV_EXPORTS_W_SIMPLE DMatch
{
    CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {}
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) :
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}

    CV_PROP_RW int queryIdx; // query descriptor index
    CV_PROP_RW int trainIdx; // train descriptor index
    CV_PROP_RW int imgIdx;   // train image index

    CV_PROP_RW float distance;

    // less is better
    bool operator<( const DMatch &m ) const
    {
        return distance < m.distance;
    }
};

/****************************************************************************************\
*                                  DescriptorMatcher                                     *
\****************************************************************************************/
/*
 * Abstract base class for matching two sets of descriptors.
 */
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
{
public:
    virtual ~DescriptorMatcher();

    /*
     * Add descriptors to train descriptor collection.
     * descriptors      Descriptors to add. Each descriptors[i] is a descriptors set from one image.
     */
    CV_WRAP virtual void add( const vector<Mat>& descriptors );
    /*
     * Get train descriptors collection.
     */
    CV_WRAP const vector<Mat>& getTrainDescriptors() const;
    /*
     * Clear train descriptors collection.
     */
    CV_WRAP virtual void clear();

    /*
     * Return true if there are not train descriptors in collection.
     */
    CV_WRAP virtual bool empty() const;
    /*
     * Return true if the matcher supports mask in match methods.
     */
    CV_WRAP virtual bool isMaskSupported() const = 0;

    /*
     * Train matcher (e.g. train flann index).
     * In all methods to match the method train() is run every time before matching.
     * Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation
     * of this method, other matchers really train their inner structures
     * (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation
     * of train() should check the class object state and do traing/retraining
     * only if the state requires that (e.g. FlannBasedMatcher trains flann::Index
     * if it has not trained yet or if new descriptors have been added to the train
     * collection).
     */
    CV_WRAP virtual void train();
    /*
     * Group of methods to match descriptors from image pair.
     * Method train() is run in this methods.
     */
    // Find one best match for each query descriptor (if mask is empty).
    CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
                CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
    // Find k best matches for each query descriptor (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
                   CV_OUT vector<vector<DMatch> >& matches, int k,
                   const Mat& mask=Mat(), bool compactResult=false ) const;
    // Find best matches for each query descriptor which have distance less than
    // maxDistance (in increasing order of distances).
    void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const Mat& mask=Mat(), bool compactResult=false ) const;
    /*
     * Group of methods to match descriptors from one image to image set.
     * See description of similar methods for matching image pair above.
     */
    CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches,
                const vector<Mat>& masks=vector<Mat>() );
    CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    // Reads matcher object from a file node
    virtual void read( const FileNode& );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& ) const;

    // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
    // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
    // but with empty train data.
    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;

    CV_WRAP static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType );
protected:
    /*
     * Class to work with descriptors from several images as with one merged matrix.
     * It is used e.g. in FlannBasedMatcher.
     */
    class CV_EXPORTS DescriptorCollection
    {
    public:
        DescriptorCollection();
        DescriptorCollection( const DescriptorCollection& collection );
        virtual ~DescriptorCollection();

        // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
        void set( const vector<Mat>& descriptors );
        virtual void clear();

        const Mat& getDescriptors() const;
        const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
        const Mat getDescriptor( int globalDescIdx ) const;
        void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;

        int size() const;

    protected:
        Mat mergedDescriptors;
        vector<int> startIdxs;
    };

    // In fact the matching is implemented only by the following two methods. These methods suppose
    // that the class object has been trained already. Public match methods call these methods
    // after calling train().
    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;

    static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
    static bool isMaskedOut( const vector<Mat>& masks, int queryIdx );

    static Mat clone_op( Mat m ) { return m.clone(); }
    void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const;

    // Collection of descriptors from train images.
    vector<Mat> trainDescCollection;
};

/*
 * Brute-force descriptor matcher.
 *
 * For each descriptor in the first set, this matcher finds the closest
 * descriptor in the second set by trying each one.
 *
 * For efficiency, BruteForceMatcher is templated on the distance metric.
 * For float descriptors, a common choice would be cv::L2<float>.
 */
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
{
public:
    CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
    virtual ~BFMatcher() {}

    virtual bool isMaskSupported() const { return true; }

    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;

    AlgorithmInfo* info() const;
protected:
    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    int normType;
    bool crossCheck;
};


/*
 * Flann based matcher
 */
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
{
public:
    CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
                       const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );

    virtual void add( const vector<Mat>& descriptors );
    virtual void clear();

    // Reads matcher object from a file node
    virtual void read( const FileNode& );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& ) const;

    virtual void train();
    virtual bool isMaskSupported() const;

    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;

    AlgorithmInfo* info() const;
protected:
    static void convertToDMatches( const DescriptorCollection& descriptors,
                                   const Mat& indices, const Mat& distances,
                                   vector<vector<DMatch> >& matches );

    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    Ptr<flann::IndexParams> indexParams;
    Ptr<flann::SearchParams> searchParams;
    Ptr<flann::Index> flannIndex;

    DescriptorCollection mergedDescriptors;
    int addedDescCount;
};

/****************************************************************************************\
*                                GenericDescriptorMatcher                                *
\****************************************************************************************/
/*
 *   Abstract interface for a keypoint descriptor and matcher
 */
class GenericDescriptorMatcher;
typedef GenericDescriptorMatcher GenericDescriptorMatch;

class CV_EXPORTS GenericDescriptorMatcher
{
public:
    GenericDescriptorMatcher();
    virtual ~GenericDescriptorMatcher();

    /*
     * Add train collection: images and keypoints from them.
     * images       A set of train images.
     * ketpoints    Keypoint collection that have been detected on train images.
     *
     * Keypoints for which a descriptor cannot be computed are removed. Such keypoints
     * must be filtered in this method befor adding keypoints to train collection "trainPointCollection".
     * If inheritor class need perform such prefiltering the method add() must be overloaded.
     * In the other class methods programmer has access to the train keypoints by a constant link.
     */
    virtual void add( const vector<Mat>& images,
                      vector<vector<KeyPoint> >& keypoints );

    const vector<Mat>& getTrainImages() const;
    const vector<vector<KeyPoint> >& getTrainKeypoints() const;

    /*
     * Clear images and keypoints storing in train collection.
     */
    virtual void clear();
    /*
     * Returns true if matcher supports mask to match descriptors.
     */
    virtual bool isMaskSupported() = 0;
    /*
     * Train some inner structures (e.g. flann index or decision trees).
     * train() methods is run every time in matching methods. So the method implementation
     * should has a check whether these inner structures need be trained/retrained or not.
     */
    virtual void train();

    /*
     * Classifies query keypoints.
     * queryImage    The query image
     * queryKeypoints   Keypoints from the query image
     * trainImage    The train image
     * trainKeypoints   Keypoints from the train image
     */
    // Classify keypoints from query image under one train image.
    void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                           const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
    // Classify keypoints from query image under train image collection.
    void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );

    /*
     * Group of methods to match keypoints from image pair.
     * Keypoints for which a descriptor cannot be computed are removed.
     * train() method is called here.
     */
    // Find one best match for each query descriptor (if mask is empty).
    void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                vector<DMatch>& matches, const Mat& mask=Mat() ) const;
    // Find k best matches for each query keypoint (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows.
    // If compactResult is true matches vector will not contain matches for fully masked out query descriptors.
    void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                   const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                   vector<vector<DMatch> >& matches, int k,
                   const Mat& mask=Mat(), bool compactResult=false ) const;
    // Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances).
    void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                      const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const Mat& mask=Mat(), bool compactResult=false ) const;
    /*
     * Group of methods to match keypoints from one image to image set.
     * See description of similar methods for matching image pair above.
     */
    void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
    void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                   vector<vector<DMatch> >& matches, int k,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    // Reads matcher object from a file node
    virtual void read( const FileNode& fn );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& fs ) const;

    // Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty)
    virtual bool empty() const;

    // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
    // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
    // but with empty train data.
    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;

    static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType,
                                                 const string &paramsFilename=string() );

protected:
    // In fact the matching is implemented only by the following two methods. These methods suppose
    // that the class object has been trained already. Public match methods call these methods
    // after calling train().
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                               vector<vector<DMatch> >& matches, int k,
                               const vector<Mat>& masks, bool compactResult ) = 0;
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                                  vector<vector<DMatch> >& matches, float maxDistance,
                                  const vector<Mat>& masks, bool compactResult ) = 0;
    /*
     * A storage for sets of keypoints together with corresponding images and class IDs
     */
    class CV_EXPORTS KeyPointCollection
    {
    public:
        KeyPointCollection();
        KeyPointCollection( const KeyPointCollection& collection );
        void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints );
        void clear();

        // Returns the total number of keypoints in the collection
        size_t keypointCount() const;
        size_t imageCount() const;

        const vector<vector<KeyPoint> >& getKeypoints() const;
        const vector<KeyPoint>& getKeypoints( int imgIdx ) const;
        const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const;
        const KeyPoint& getKeyPoint( int globalPointIdx ) const;
        void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const;

        const vector<Mat>& getImages() const;
        const Mat& getImage( int imgIdx ) const;

    protected:
        int pointCount;

        vector<Mat> images;
        vector<vector<KeyPoint> > keypoints;
        // global indices of the first points in each image, startIndices.size() = keypoints.size()
        vector<int> startIndices;

    private:
        static Mat clone_op( Mat m ) { return m.clone(); }
    };

    KeyPointCollection trainPointCollection;
};


/****************************************************************************************\
*                                VectorDescriptorMatcher                                 *
\****************************************************************************************/

/*
 *  A class used for matching descriptors that can be described as vectors in a finite-dimensional space
 */
class VectorDescriptorMatcher;
typedef VectorDescriptorMatcher VectorDescriptorMatch;

class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
{
public:
    VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
    virtual ~VectorDescriptorMatcher();

    virtual void add( const vector<Mat>& imgCollection,
                      vector<vector<KeyPoint> >& pointCollection );

    virtual void clear();

    virtual void train();

    virtual bool isMaskSupported();

    virtual void read( const FileNode& fn );
    virtual void write( FileStorage& fs ) const;
    virtual bool empty() const;

    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;

protected:
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                               vector<vector<DMatch> >& matches, int k,
                               const vector<Mat>& masks, bool compactResult );
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                                  vector<vector<DMatch> >& matches, float maxDistance,
                                  const vector<Mat>& masks, bool compactResult );

    Ptr<DescriptorExtractor> extractor;
    Ptr<DescriptorMatcher> matcher;
};

/****************************************************************************************\
*                                   Drawing functions                                    *
\****************************************************************************************/
struct CV_EXPORTS DrawMatchesFlags
{
    enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
                       // i.e. existing memory of output image may be reused.
                       // Two source image, matches and single keypoints will be drawn.
                       // For each keypoint only the center point will be drawn (without
                       // the circle around keypoint with keypoint size and orientation).
          DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
                                // Matches will be drawn on existing content of output image.
          NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
          DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
                                  // orientation will be drawn.
        };
};

// Draw keypoints.
CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, CV_OUT Mat& outImage,
                               const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );

// Draws matches of keypints from two images on output image.
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
                             const Mat& img2, const vector<KeyPoint>& keypoints2,
                             const vector<DMatch>& matches1to2, Mat& outImg,
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
                             const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT );

CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
                             const Mat& img2, const vector<KeyPoint>& keypoints2,
                             const vector<vector<DMatch> >& matches1to2, Mat& outImg,
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
                             const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );

/****************************************************************************************\
*   Functions to evaluate the feature detectors and [generic] descriptor extractors      *
\****************************************************************************************/

CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
                                         vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2,
                                         float& repeatability, int& correspCount,
                                         const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );

CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2,
                                             const vector<vector<uchar> >& correctMatches1to2Mask,
                                             vector<Point2f>& recallPrecisionCurve );

CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision );

CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
                                                  vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
                                                  vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
                                                  vector<Point2f>& recallPrecisionCurve,
                                                  const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() );


/****************************************************************************************\
*                                     Bag of visual words                                *
\****************************************************************************************/
/*
 * Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
 */
class CV_EXPORTS BOWTrainer
{
public:
    BOWTrainer();
    virtual ~BOWTrainer();

    void add( const Mat& descriptors );
    const vector<Mat>& getDescriptors() const;
    int descripotorsCount() const;

    virtual void clear();

    /*
     * Train visual words vocabulary, that is cluster training descriptors and
     * compute cluster centers.
     * Returns cluster centers.
     *
     * descriptors      Training descriptors computed on images keypoints.
     */
    virtual Mat cluster() const = 0;
    virtual Mat cluster( const Mat& descriptors ) const = 0;

protected:
    vector<Mat> descriptors;
    int size;
};

/*
 * This is BOWTrainer using cv::kmeans to get vocabulary.
 */
class CV_EXPORTS BOWKMeansTrainer : public BOWTrainer
{
public:
    BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
                      int attempts=3, int flags=KMEANS_PP_CENTERS );
    virtual ~BOWKMeansTrainer();

    // Returns trained vocabulary (i.e. cluster centers).
    virtual Mat cluster() const;
    virtual Mat cluster( const Mat& descriptors ) const;

protected:

    int clusterCount;
    TermCriteria termcrit;
    int attempts;
    int flags;
};

/*
 * Class to compute image descriptor using bag of visual words.
 */
class CV_EXPORTS BOWImgDescriptorExtractor
{
public:
    BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
                               const Ptr<DescriptorMatcher>& dmatcher );
    virtual ~BOWImgDescriptorExtractor();

    void setVocabulary( const Mat& vocabulary );
    const Mat& getVocabulary() const;
    void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
                  vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
    // compute() is not constant because DescriptorMatcher::match is not constant

    int descriptorSize() const;
    int descriptorType() const;

protected:
    Mat vocabulary;
    Ptr<DescriptorExtractor> dextractor;
    Ptr<DescriptorMatcher> dmatcher;
};

} /* namespace cv */

#endif /* __cplusplus */

#endif

/* End of file. */