This file is indexed.

/usr/include/opencv2/imgproc/imgproc.hpp is in libopencv-imgproc-dev 2.4.9.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
/*! \file imgproc.hpp
 \brief The Image Processing
 */

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_IMGPROC_HPP__
#define __OPENCV_IMGPROC_HPP__

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/types_c.h"

#ifdef __cplusplus

/*! \namespace cv
 Namespace where all the C++ OpenCV functionality resides
 */
namespace cv
{

//! various border interpolation methods
enum { BORDER_REPLICATE=IPL_BORDER_REPLICATE, BORDER_CONSTANT=IPL_BORDER_CONSTANT,
       BORDER_REFLECT=IPL_BORDER_REFLECT, BORDER_WRAP=IPL_BORDER_WRAP,
       BORDER_REFLECT_101=IPL_BORDER_REFLECT_101, BORDER_REFLECT101=BORDER_REFLECT_101,
       BORDER_TRANSPARENT=IPL_BORDER_TRANSPARENT,
       BORDER_DEFAULT=BORDER_REFLECT_101, BORDER_ISOLATED=16 };

//! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p.
CV_EXPORTS_W int borderInterpolate( int p, int len, int borderType );

/*!
 The Base Class for 1D or Row-wise Filters

 This is the base class for linear or non-linear filters that process 1D data.
 In particular, such filters are used for the "horizontal" filtering parts in separable filters.

 Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters,
 and those pointers can be used directly or within cv::FilterEngine.
*/
class CV_EXPORTS BaseRowFilter
{
public:
    //! the default constructor
    BaseRowFilter();
    //! the destructor
    virtual ~BaseRowFilter();
    //! the filtering operator. Must be overrided in the derived classes. The horizontal border interpolation is done outside of the class.
    virtual void operator()(const uchar* src, uchar* dst,
                            int width, int cn) = 0;
    int ksize, anchor;
};


/*!
 The Base Class for Column-wise Filters

 This is the base class for linear or non-linear filters that process columns of 2D arrays.
 Such filters are used for the "vertical" filtering parts in separable filters.

 Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters,
 and those pointers can be used directly or within cv::FilterEngine.

 Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information,
 i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset()
 must be called (e.g. the method is called by cv::FilterEngine)
 */
class CV_EXPORTS BaseColumnFilter
{
public:
    //! the default constructor
    BaseColumnFilter();
    //! the destructor
    virtual ~BaseColumnFilter();
    //! the filtering operator. Must be overrided in the derived classes. The vertical border interpolation is done outside of the class.
    virtual void operator()(const uchar** src, uchar* dst, int dststep,
                            int dstcount, int width) = 0;
    //! resets the internal buffers, if any
    virtual void reset();
    int ksize, anchor;
};

/*!
 The Base Class for Non-Separable 2D Filters.

 This is the base class for linear or non-linear 2D filters.

 Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters,
 and those pointers can be used directly or within cv::FilterEngine.

 Similar to cv::BaseColumnFilter, the class may have some context information,
 that should be reset using BaseFilter::reset() method before processing the new array.
*/
class CV_EXPORTS BaseFilter
{
public:
    //! the default constructor
    BaseFilter();
    //! the destructor
    virtual ~BaseFilter();
    //! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class.
    virtual void operator()(const uchar** src, uchar* dst, int dststep,
                            int dstcount, int width, int cn) = 0;
    //! resets the internal buffers, if any
    virtual void reset();
    Size ksize;
    Point anchor;
};

/*!
 The Main Class for Image Filtering.

 The class can be used to apply an arbitrary filtering operation to an image.
 It contains all the necessary intermediate buffers, it computes extrapolated values
 of the "virtual" pixels outside of the image etc.
 Pointers to the initialized cv::FilterEngine instances
 are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(),
 cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(),
 cv::createBoxFilter() and cv::createMorphologyFilter().

 Using the class you can process large images by parts and build complex pipelines
 that include filtering as some of the stages. If all you need is to apply some pre-defined
 filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc.
 functions that create FilterEngine internally.

 Here is the example on how to use the class to implement Laplacian operator, which is the sum of
 second-order derivatives. More complex variant for different types is implemented in cv::Laplacian().

 \code
 void laplace_f(const Mat& src, Mat& dst)
 {
     CV_Assert( src.type() == CV_32F );
     // make sure the destination array has the proper size and type
     dst.create(src.size(), src.type());

     // get the derivative and smooth kernels for d2I/dx2.
     // for d2I/dy2 we could use the same kernels, just swapped
     Mat kd, ks;
     getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );

     // let's process 10 source rows at once
     int DELTA = std::min(10, src.rows);
     Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(),
     dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
     Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
     dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );

     int y = Fxx->start(src), dsty = 0, dy = 0;
     Fyy->start(src);
     const uchar* sptr = src.data + y*src.step;

     // allocate the buffers for the spatial image derivatives;
     // the buffers need to have more than DELTA rows, because at the
     // last iteration the output may take max(kd.rows-1,ks.rows-1)
     // rows more than the input.
     Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() );
     Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() );

     // inside the loop we always pass DELTA rows to the filter
     // (note that the "proceed" method takes care of possibe overflow, since
     // it was given the actual image height in the "start" method)
     // on output we can get:
     //  * < DELTA rows (the initial buffer accumulation stage)
     //  * = DELTA rows (settled state in the middle)
     //  * > DELTA rows (then the input image is over, but we generate
     //                  "virtual" rows using the border mode and filter them)
     // this variable number of output rows is dy.
     // dsty is the current output row.
     // sptr is the pointer to the first input row in the portion to process
     for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy )
     {
         Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step );
         dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step );
         if( dy > 0 )
         {
             Mat dstripe = dst.rowRange(dsty, dsty + dy);
             add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
         }
     }
 }
 \endcode
*/
class CV_EXPORTS FilterEngine
{
public:
    //! the default constructor
    FilterEngine();
    //! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty.
    FilterEngine(const Ptr<BaseFilter>& _filter2D,
                 const Ptr<BaseRowFilter>& _rowFilter,
                 const Ptr<BaseColumnFilter>& _columnFilter,
                 int srcType, int dstType, int bufType,
                 int _rowBorderType=BORDER_REPLICATE,
                 int _columnBorderType=-1,
                 const Scalar& _borderValue=Scalar());
    //! the destructor
    virtual ~FilterEngine();
    //! reinitializes the engine. The previously assigned filters are released.
    void init(const Ptr<BaseFilter>& _filter2D,
              const Ptr<BaseRowFilter>& _rowFilter,
              const Ptr<BaseColumnFilter>& _columnFilter,
              int srcType, int dstType, int bufType,
              int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1,
              const Scalar& _borderValue=Scalar());
    //! starts filtering of the specified ROI of an image of size wholeSize.
    virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1);
    //! starts filtering of the specified ROI of the specified image.
    virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1),
                      bool isolated=false, int maxBufRows=-1);
    //! processes the next srcCount rows of the image.
    virtual int proceed(const uchar* src, int srcStep, int srcCount,
                        uchar* dst, int dstStep);
    //! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered.
    virtual void apply( const Mat& src, Mat& dst,
                        const Rect& srcRoi=Rect(0,0,-1,-1),
                        Point dstOfs=Point(0,0),
                        bool isolated=false);
    //! returns true if the filter is separable
    bool isSeparable() const { return (const BaseFilter*)filter2D == 0; }
    //! returns the number
    int remainingInputRows() const;
    int remainingOutputRows() const;

    int srcType, dstType, bufType;
    Size ksize;
    Point anchor;
    int maxWidth;
    Size wholeSize;
    Rect roi;
    int dx1, dx2;
    int rowBorderType, columnBorderType;
    vector<int> borderTab;
    int borderElemSize;
    vector<uchar> ringBuf;
    vector<uchar> srcRow;
    vector<uchar> constBorderValue;
    vector<uchar> constBorderRow;
    int bufStep, startY, startY0, endY, rowCount, dstY;
    vector<uchar*> rows;

    Ptr<BaseFilter> filter2D;
    Ptr<BaseRowFilter> rowFilter;
    Ptr<BaseColumnFilter> columnFilter;
};

//! type of the kernel
enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2,
       KERNEL_SMOOTH=4, KERNEL_INTEGER=8 };

//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
CV_EXPORTS int getKernelType(InputArray kernel, Point anchor);

//! returns the primitive row filter with the specified kernel
CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType,
                                            InputArray kernel, int anchor,
                                            int symmetryType);

//! returns the primitive column filter with the specified kernel
CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType,
                                            InputArray kernel, int anchor,
                                            int symmetryType, double delta=0,
                                            int bits=0);

//! returns 2D filter with the specified kernel
CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType,
                                           InputArray kernel,
                                           Point anchor=Point(-1,-1),
                                           double delta=0, int bits=0);

//! returns the separable linear filter engine
CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType,
                          InputArray rowKernel, InputArray columnKernel,
                          Point anchor=Point(-1,-1), double delta=0,
                          int rowBorderType=BORDER_DEFAULT,
                          int columnBorderType=-1,
                          const Scalar& borderValue=Scalar());

//! returns the non-separable linear filter engine
CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType,
                 InputArray kernel, Point _anchor=Point(-1,-1),
                 double delta=0, int rowBorderType=BORDER_DEFAULT,
                 int columnBorderType=-1, const Scalar& borderValue=Scalar());

//! returns the Gaussian kernel with the specified parameters
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F );

//! returns the Gaussian filter engine
CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
                                    double sigma1, double sigma2=0,
                                    int borderType=BORDER_DEFAULT);
//! initializes kernels of the generalized Sobel operator
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
                                   int dx, int dy, int ksize,
                                   bool normalize=false, int ktype=CV_32F );
//! returns filter engine for the generalized Sobel operator
CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
                                        int dx, int dy, int ksize,
                                        int borderType=BORDER_DEFAULT );
//! returns horizontal 1D box filter
CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType,
                                              int ksize, int anchor=-1);
//! returns vertical 1D box filter
CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter( int sumType, int dstType,
                                                     int ksize, int anchor=-1,
                                                     double scale=1);
//! returns box filter engine
CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize,
                                              Point anchor=Point(-1,-1),
                                              bool normalize=true,
                                              int borderType=BORDER_DEFAULT);

//! returns the Gabor kernel with the specified parameters
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
                                 double gamma, double psi=CV_PI*0.5, int ktype=CV_64F );

//! type of morphological operation
enum { MORPH_ERODE=CV_MOP_ERODE, MORPH_DILATE=CV_MOP_DILATE,
       MORPH_OPEN=CV_MOP_OPEN, MORPH_CLOSE=CV_MOP_CLOSE,
       MORPH_GRADIENT=CV_MOP_GRADIENT, MORPH_TOPHAT=CV_MOP_TOPHAT,
       MORPH_BLACKHAT=CV_MOP_BLACKHAT };

//! returns horizontal 1D morphological filter
CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor=-1);
//! returns vertical 1D morphological filter
CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1);
//! returns 2D morphological filter
CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, InputArray kernel,
                                               Point anchor=Point(-1,-1));

//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }

//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, InputArray kernel,
                    Point anchor=Point(-1,-1), int rowBorderType=BORDER_CONSTANT,
                    int columnBorderType=-1,
                    const Scalar& borderValue=morphologyDefaultBorderValue());

//! shape of the structuring element
enum { MORPH_RECT=0, MORPH_CROSS=1, MORPH_ELLIPSE=2 };
//! returns structuring element of the specified shape and size
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1));

template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj();

//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
CV_EXPORTS_W void copyMakeBorder( InputArray src, OutputArray dst,
                                int top, int bottom, int left, int right,
                                int borderType, const Scalar& value=Scalar() );

//! smooths the image using median filter.
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
//! smooths the image using Gaussian filter.
CV_EXPORTS_W void GaussianBlur( InputArray src,
                                               OutputArray dst, Size ksize,
                                               double sigmaX, double sigmaY=0,
                                               int borderType=BORDER_DEFAULT );
//! smooths the image using bilateral filter
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
                                   double sigmaColor, double sigmaSpace,
                                   int borderType=BORDER_DEFAULT );
//! smooths the image using adaptive bilateral filter
CV_EXPORTS_W void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize,
                                           double sigmaSpace, double maxSigmaColor = 20.0, Point anchor=Point(-1, -1),
                                           int borderType=BORDER_DEFAULT );
//! smooths the image using the box filter. Each pixel is processed in O(1) time
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
                             Size ksize, Point anchor=Point(-1,-1),
                             bool normalize=true,
                             int borderType=BORDER_DEFAULT );
//! a synonym for normalized box filter
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
                        Size ksize, Point anchor=Point(-1,-1),
                        int borderType=BORDER_DEFAULT );

//! applies non-separable 2D linear filter to the image
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
                            InputArray kernel, Point anchor=Point(-1,-1),
                            double delta=0, int borderType=BORDER_DEFAULT );

//! applies separable 2D linear filter to the image
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
                               InputArray kernelX, InputArray kernelY,
                               Point anchor=Point(-1,-1),
                               double delta=0, int borderType=BORDER_DEFAULT );

//! applies generalized Sobel operator to the image
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
                         int dx, int dy, int ksize=3,
                         double scale=1, double delta=0,
                         int borderType=BORDER_DEFAULT );

//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
                          int dx, int dy, double scale=1, double delta=0,
                          int borderType=BORDER_DEFAULT );

//! applies Laplacian operator to the image
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
                             int ksize=1, double scale=1, double delta=0,
                             int borderType=BORDER_DEFAULT );

//! applies Canny edge detector and produces the edge map.
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
                         double threshold1, double threshold2,
                         int apertureSize=3, bool L2gradient=false );

//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
                                   int blockSize, int ksize=3,
                                   int borderType=BORDER_DEFAULT );

//! computes Harris cornerness criteria at each image pixel
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
                                int ksize, double k,
                                int borderType=BORDER_DEFAULT );

// low-level function for computing eigenvalues and eigenvectors of 2x2 matrices
CV_EXPORTS void eigen2x2( const float* a, float* e, int n );

//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix  at each pixel. The output is stored as 6-channel matrix.
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
                                          int blockSize, int ksize,
                                          int borderType=BORDER_DEFAULT );

//! computes another complex cornerness criteria at each pixel
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
                                   int borderType=BORDER_DEFAULT );

//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
                                Size winSize, Size zeroZone,
                                TermCriteria criteria );

//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
                                     int maxCorners, double qualityLevel, double minDistance,
                                     InputArray mask=noArray(), int blockSize=3,
                                     bool useHarrisDetector=false, double k=0.04 );

//! finds lines in the black-n-white image using the standard or pyramid Hough transform
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
                              double rho, double theta, int threshold,
                              double srn=0, double stn=0 );

//! finds line segments in the black-n-white image using probabilistic Hough transform
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
                               double rho, double theta, int threshold,
                               double minLineLength=0, double maxLineGap=0 );

//! finds circles in the grayscale image using 2+1 gradient Hough transform
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
                               int method, double dp, double minDist,
                               double param1=100, double param2=100,
                               int minRadius=0, int maxRadius=0 );

enum
{
    GHT_POSITION = 0,
    GHT_SCALE = 1,
    GHT_ROTATION = 2
};

//! finds arbitrary template in the grayscale image using Generalized Hough Transform
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
class CV_EXPORTS GeneralizedHough : public Algorithm
{
public:
    static Ptr<GeneralizedHough> create(int method);

    virtual ~GeneralizedHough();

    //! set template to search
    void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
    void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1));

    //! find template on image
    void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100);
    void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray());

    void release();

protected:
    virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0;
    virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0;
    virtual void releaseImpl() = 0;

private:
    Mat edges_, dx_, dy_;
};

//! erodes the image (applies the local minimum operator)
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
                         Point anchor=Point(-1,-1), int iterations=1,
                         int borderType=BORDER_CONSTANT,
                         const Scalar& borderValue=morphologyDefaultBorderValue() );

//! dilates the image (applies the local maximum operator)
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
                          Point anchor=Point(-1,-1), int iterations=1,
                          int borderType=BORDER_CONSTANT,
                          const Scalar& borderValue=morphologyDefaultBorderValue() );

//! applies an advanced morphological operation to the image
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
                                int op, InputArray kernel,
                                Point anchor=Point(-1,-1), int iterations=1,
                                int borderType=BORDER_CONSTANT,
                                const Scalar& borderValue=morphologyDefaultBorderValue() );

//! interpolation algorithm
enum
{
    INTER_NEAREST=CV_INTER_NN, //!< nearest neighbor interpolation
    INTER_LINEAR=CV_INTER_LINEAR, //!< bilinear interpolation
    INTER_CUBIC=CV_INTER_CUBIC, //!< bicubic interpolation
    INTER_AREA=CV_INTER_AREA, //!< area-based (or super) interpolation
    INTER_LANCZOS4=CV_INTER_LANCZOS4, //!< Lanczos interpolation over 8x8 neighborhood
    INTER_MAX=7,
    WARP_INVERSE_MAP=CV_WARP_INVERSE_MAP
};

//! resizes the image
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
                          Size dsize, double fx=0, double fy=0,
                          int interpolation=INTER_LINEAR );

//! warps the image using affine transformation
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
                              InputArray M, Size dsize,
                              int flags=INTER_LINEAR,
                              int borderMode=BORDER_CONSTANT,
                              const Scalar& borderValue=Scalar());

//! warps the image using perspective transformation
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
                                   InputArray M, Size dsize,
                                   int flags=INTER_LINEAR,
                                   int borderMode=BORDER_CONSTANT,
                                   const Scalar& borderValue=Scalar());

enum
{
    INTER_BITS=5, INTER_BITS2=INTER_BITS*2,
    INTER_TAB_SIZE=(1<<INTER_BITS),
    INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE
};

//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
                         InputArray map1, InputArray map2,
                         int interpolation, int borderMode=BORDER_CONSTANT,
                         const Scalar& borderValue=Scalar());

//! converts maps for remap from floating-point to fixed-point format or backwards
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
                               OutputArray dstmap1, OutputArray dstmap2,
                               int dstmap1type, bool nninterpolation=false );

//! returns 2x3 affine transformation matrix for the planar rotation.
CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale );
//! returns 3x3 perspective transformation for the corresponding 4 point pairs.
CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] );
//! returns 2x3 affine transformation for the corresponding 3 point pairs.
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );

CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst );
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );

//! extracts rectangle from the image at sub-pixel location
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
                                 Point2f center, OutputArray patch, int patchType=-1 );

//! computes the integral image
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth=-1 );

//! computes the integral image and integral for the squared image
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
                                        OutputArray sqsum, int sdepth=-1 );
//! computes the integral image, integral for the squared image and the tilted integral image
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
                                        OutputArray sqsum, OutputArray tilted,
                                        int sdepth=-1 );

//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
                              InputArray mask=noArray() );
//! adds squared src image to the accumulator (dst += src*src).
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
                                    InputArray mask=noArray() );
//! adds product of the 2 images to the accumulator (dst += src1*src2).
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
                                     InputOutputArray dst, InputArray mask=noArray() );
//! updates the running average (dst = dst*(1-alpha) + src*alpha)
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
                                      double alpha, InputArray mask=noArray() );

//! computes PSNR image/video quality metric
CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);

CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
                                  InputArray window = noArray());
CV_EXPORTS_W Point2d phaseCorrelateRes(InputArray src1, InputArray src2,
                                    InputArray window, CV_OUT double* response = 0);
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);

//! type of the threshold operation
enum { THRESH_BINARY=CV_THRESH_BINARY, THRESH_BINARY_INV=CV_THRESH_BINARY_INV,
       THRESH_TRUNC=CV_THRESH_TRUNC, THRESH_TOZERO=CV_THRESH_TOZERO,
       THRESH_TOZERO_INV=CV_THRESH_TOZERO_INV, THRESH_MASK=CV_THRESH_MASK,
       THRESH_OTSU=CV_THRESH_OTSU };

//! applies fixed threshold to the image
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
                               double thresh, double maxval, int type );

//! adaptive threshold algorithm
enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 };

//! applies variable (adaptive) threshold to the image
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
                                     double maxValue, int adaptiveMethod,
                                     int thresholdType, int blockSize, double C );

//! smooths and downsamples the image
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
                           const Size& dstsize=Size(), int borderType=BORDER_DEFAULT );
//! upsamples and smoothes the image
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
                         const Size& dstsize=Size(), int borderType=BORDER_DEFAULT );

//! builds the gaussian pyramid using pyrDown() as a basic operation
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
                              int maxlevel, int borderType=BORDER_DEFAULT );

//! corrects lens distortion for the given camera matrix and distortion coefficients
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
                             InputArray cameraMatrix,
                             InputArray distCoeffs,
                             InputArray newCameraMatrix=noArray() );

//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
                           InputArray R, InputArray newCameraMatrix,
                           Size size, int m1type, OutputArray map1, OutputArray map2 );

enum
{
    PROJ_SPHERICAL_ORTHO = 0,
    PROJ_SPHERICAL_EQRECT = 1
};

//! initializes maps for cv::remap() for wide-angle
CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs,
                                         Size imageSize, int destImageWidth,
                                         int m1type, OutputArray map1, OutputArray map2,
                                         int projType=PROJ_SPHERICAL_EQRECT, double alpha=0);

//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize=Size(),
                                            bool centerPrincipalPoint=false );

//! returns points' coordinates after lens distortion correction
CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst,
                                   InputArray cameraMatrix, InputArray distCoeffs,
                                   InputArray R=noArray(), InputArray P=noArray());

template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj();

//! computes the joint dense histogram for a set of images.
CV_EXPORTS void calcHist( const Mat* images, int nimages,
                          const int* channels, InputArray mask,
                          OutputArray hist, int dims, const int* histSize,
                          const float** ranges, bool uniform=true, bool accumulate=false );

//! computes the joint sparse histogram for a set of images.
CV_EXPORTS void calcHist( const Mat* images, int nimages,
                          const int* channels, InputArray mask,
                          SparseMat& hist, int dims,
                          const int* histSize, const float** ranges,
                          bool uniform=true, bool accumulate=false );

CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
                            const vector<int>& channels,
                            InputArray mask, OutputArray hist,
                            const vector<int>& histSize,
                            const vector<float>& ranges,
                            bool accumulate=false );

//! computes back projection for the set of images
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
                                 const int* channels, InputArray hist,
                                 OutputArray backProject, const float** ranges,
                                 double scale=1, bool uniform=true );

//! computes back projection for the set of images
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
                                 const int* channels, const SparseMat& hist,
                                 OutputArray backProject, const float** ranges,
                                 double scale=1, bool uniform=true );

CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const vector<int>& channels,
                                   InputArray hist, OutputArray dst,
                                   const vector<float>& ranges,
                                   double scale );

/*CV_EXPORTS void calcBackProjectPatch( const Mat* images, int nimages, const int* channels,
                                      InputArray hist, OutputArray dst, Size patchSize,
                                      int method, double factor=1 );

CV_EXPORTS_W void calcBackProjectPatch( InputArrayOfArrays images, const vector<int>& channels,
                                        InputArray hist, OutputArray dst, Size patchSize,
                                        int method, double factor=1 );*/

//! compares two histograms stored in dense arrays
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );

//! compares two histograms stored in sparse arrays
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );

//! normalizes the grayscale image brightness and contrast by normalizing its histogram
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );

class CV_EXPORTS_W CLAHE : public Algorithm
{
public:
    CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;

    CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
    CV_WRAP virtual double getClipLimit() const = 0;

    CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
    CV_WRAP virtual Size getTilesGridSize() const = 0;

    CV_WRAP virtual void collectGarbage() = 0;
};
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));

CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
                      int distType, InputArray cost=noArray(),
                      float* lowerBound=0, OutputArray flow=noArray() );

//! segments the image using watershed algorithm
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );

//! filters image using meanshift algorithm
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
                                         double sp, double sr, int maxLevel=1,
                                         TermCriteria termcrit=TermCriteria(
                                            TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );

//! class of the pixel in GrabCut algorithm
enum
{
    GC_BGD    = 0,  //!< background
    GC_FGD    = 1,  //!< foreground
    GC_PR_BGD = 2,  //!< most probably background
    GC_PR_FGD = 3   //!< most probably foreground
};

//! GrabCut algorithm flags
enum
{
    GC_INIT_WITH_RECT  = 0,
    GC_INIT_WITH_MASK  = 1,
    GC_EVAL            = 2
};

//! segments the image using GrabCut algorithm
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
                           InputOutputArray bgdModel, InputOutputArray fgdModel,
                           int iterCount, int mode = GC_EVAL );

enum
{
    DIST_LABEL_CCOMP = 0,
    DIST_LABEL_PIXEL = 1
};

//! builds the discrete Voronoi diagram
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
                                     OutputArray labels, int distanceType, int maskSize,
                                     int labelType=DIST_LABEL_CCOMP );

//! computes the distance transform map
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
                                     int distanceType, int maskSize );

enum { FLOODFILL_FIXED_RANGE = 1 << 16, FLOODFILL_MASK_ONLY = 1 << 17 };

//! fills the semi-uniform image region starting from the specified seed point
CV_EXPORTS int floodFill( InputOutputArray image,
                          Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
                          Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
                          int flags=4 );

//! fills the semi-uniform image region and/or the mask starting from the specified seed point
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
                            Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
                            Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
                            int flags=4 );


enum
{
    COLOR_BGR2BGRA    =0,
    COLOR_RGB2RGBA    =COLOR_BGR2BGRA,

    COLOR_BGRA2BGR    =1,
    COLOR_RGBA2RGB    =COLOR_BGRA2BGR,

    COLOR_BGR2RGBA    =2,
    COLOR_RGB2BGRA    =COLOR_BGR2RGBA,

    COLOR_RGBA2BGR    =3,
    COLOR_BGRA2RGB    =COLOR_RGBA2BGR,

    COLOR_BGR2RGB     =4,
    COLOR_RGB2BGR     =COLOR_BGR2RGB,

    COLOR_BGRA2RGBA   =5,
    COLOR_RGBA2BGRA   =COLOR_BGRA2RGBA,

    COLOR_BGR2GRAY    =6,
    COLOR_RGB2GRAY    =7,
    COLOR_GRAY2BGR    =8,
    COLOR_GRAY2RGB    =COLOR_GRAY2BGR,
    COLOR_GRAY2BGRA   =9,
    COLOR_GRAY2RGBA   =COLOR_GRAY2BGRA,
    COLOR_BGRA2GRAY   =10,
    COLOR_RGBA2GRAY   =11,

    COLOR_BGR2BGR565  =12,
    COLOR_RGB2BGR565  =13,
    COLOR_BGR5652BGR  =14,
    COLOR_BGR5652RGB  =15,
    COLOR_BGRA2BGR565 =16,
    COLOR_RGBA2BGR565 =17,
    COLOR_BGR5652BGRA =18,
    COLOR_BGR5652RGBA =19,

    COLOR_GRAY2BGR565 =20,
    COLOR_BGR5652GRAY =21,

    COLOR_BGR2BGR555  =22,
    COLOR_RGB2BGR555  =23,
    COLOR_BGR5552BGR  =24,
    COLOR_BGR5552RGB  =25,
    COLOR_BGRA2BGR555 =26,
    COLOR_RGBA2BGR555 =27,
    COLOR_BGR5552BGRA =28,
    COLOR_BGR5552RGBA =29,

    COLOR_GRAY2BGR555 =30,
    COLOR_BGR5552GRAY =31,

    COLOR_BGR2XYZ     =32,
    COLOR_RGB2XYZ     =33,
    COLOR_XYZ2BGR     =34,
    COLOR_XYZ2RGB     =35,

    COLOR_BGR2YCrCb   =36,
    COLOR_RGB2YCrCb   =37,
    COLOR_YCrCb2BGR   =38,
    COLOR_YCrCb2RGB   =39,

    COLOR_BGR2HSV     =40,
    COLOR_RGB2HSV     =41,

    COLOR_BGR2Lab     =44,
    COLOR_RGB2Lab     =45,

    COLOR_BayerBG2BGR =46,
    COLOR_BayerGB2BGR =47,
    COLOR_BayerRG2BGR =48,
    COLOR_BayerGR2BGR =49,

    COLOR_BayerBG2RGB =COLOR_BayerRG2BGR,
    COLOR_BayerGB2RGB =COLOR_BayerGR2BGR,
    COLOR_BayerRG2RGB =COLOR_BayerBG2BGR,
    COLOR_BayerGR2RGB =COLOR_BayerGB2BGR,

    COLOR_BGR2Luv     =50,
    COLOR_RGB2Luv     =51,
    COLOR_BGR2HLS     =52,
    COLOR_RGB2HLS     =53,

    COLOR_HSV2BGR     =54,
    COLOR_HSV2RGB     =55,

    COLOR_Lab2BGR     =56,
    COLOR_Lab2RGB     =57,
    COLOR_Luv2BGR     =58,
    COLOR_Luv2RGB     =59,
    COLOR_HLS2BGR     =60,
    COLOR_HLS2RGB     =61,

    COLOR_BayerBG2BGR_VNG =62,
    COLOR_BayerGB2BGR_VNG =63,
    COLOR_BayerRG2BGR_VNG =64,
    COLOR_BayerGR2BGR_VNG =65,

    COLOR_BayerBG2RGB_VNG =COLOR_BayerRG2BGR_VNG,
    COLOR_BayerGB2RGB_VNG =COLOR_BayerGR2BGR_VNG,
    COLOR_BayerRG2RGB_VNG =COLOR_BayerBG2BGR_VNG,
    COLOR_BayerGR2RGB_VNG =COLOR_BayerGB2BGR_VNG,

    COLOR_BGR2HSV_FULL = 66,
    COLOR_RGB2HSV_FULL = 67,
    COLOR_BGR2HLS_FULL = 68,
    COLOR_RGB2HLS_FULL = 69,

    COLOR_HSV2BGR_FULL = 70,
    COLOR_HSV2RGB_FULL = 71,
    COLOR_HLS2BGR_FULL = 72,
    COLOR_HLS2RGB_FULL = 73,

    COLOR_LBGR2Lab     = 74,
    COLOR_LRGB2Lab     = 75,
    COLOR_LBGR2Luv     = 76,
    COLOR_LRGB2Luv     = 77,

    COLOR_Lab2LBGR     = 78,
    COLOR_Lab2LRGB     = 79,
    COLOR_Luv2LBGR     = 80,
    COLOR_Luv2LRGB     = 81,

    COLOR_BGR2YUV      = 82,
    COLOR_RGB2YUV      = 83,
    COLOR_YUV2BGR      = 84,
    COLOR_YUV2RGB      = 85,

    COLOR_BayerBG2GRAY = 86,
    COLOR_BayerGB2GRAY = 87,
    COLOR_BayerRG2GRAY = 88,
    COLOR_BayerGR2GRAY = 89,

    //YUV 4:2:0 formats family
    COLOR_YUV2RGB_NV12 = 90,
    COLOR_YUV2BGR_NV12 = 91,
    COLOR_YUV2RGB_NV21 = 92,
    COLOR_YUV2BGR_NV21 = 93,
    COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
    COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,

    COLOR_YUV2RGBA_NV12 = 94,
    COLOR_YUV2BGRA_NV12 = 95,
    COLOR_YUV2RGBA_NV21 = 96,
    COLOR_YUV2BGRA_NV21 = 97,
    COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
    COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,

    COLOR_YUV2RGB_YV12 = 98,
    COLOR_YUV2BGR_YV12 = 99,
    COLOR_YUV2RGB_IYUV = 100,
    COLOR_YUV2BGR_IYUV = 101,
    COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
    COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
    COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
    COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,

    COLOR_YUV2RGBA_YV12 = 102,
    COLOR_YUV2BGRA_YV12 = 103,
    COLOR_YUV2RGBA_IYUV = 104,
    COLOR_YUV2BGRA_IYUV = 105,
    COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
    COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
    COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
    COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,

    COLOR_YUV2GRAY_420 = 106,
    COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
    COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
    COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
    COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
    COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
    COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
    COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,

    //YUV 4:2:2 formats family
    COLOR_YUV2RGB_UYVY = 107,
    COLOR_YUV2BGR_UYVY = 108,
    //COLOR_YUV2RGB_VYUY = 109,
    //COLOR_YUV2BGR_VYUY = 110,
    COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
    COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
    COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
    COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,

    COLOR_YUV2RGBA_UYVY = 111,
    COLOR_YUV2BGRA_UYVY = 112,
    //COLOR_YUV2RGBA_VYUY = 113,
    //COLOR_YUV2BGRA_VYUY = 114,
    COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
    COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
    COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
    COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,

    COLOR_YUV2RGB_YUY2 = 115,
    COLOR_YUV2BGR_YUY2 = 116,
    COLOR_YUV2RGB_YVYU = 117,
    COLOR_YUV2BGR_YVYU = 118,
    COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
    COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
    COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
    COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,

    COLOR_YUV2RGBA_YUY2 = 119,
    COLOR_YUV2BGRA_YUY2 = 120,
    COLOR_YUV2RGBA_YVYU = 121,
    COLOR_YUV2BGRA_YVYU = 122,
    COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
    COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
    COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
    COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,

    COLOR_YUV2GRAY_UYVY = 123,
    COLOR_YUV2GRAY_YUY2 = 124,
    //COLOR_YUV2GRAY_VYUY = COLOR_YUV2GRAY_UYVY,
    COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
    COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
    COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
    COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
    COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,

    // alpha premultiplication
    COLOR_RGBA2mRGBA = 125,
    COLOR_mRGBA2RGBA = 126,

    COLOR_RGB2YUV_I420 = 127,
    COLOR_BGR2YUV_I420 = 128,
    COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
    COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,

    COLOR_RGBA2YUV_I420 = 129,
    COLOR_BGRA2YUV_I420 = 130,
    COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
    COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
    COLOR_RGB2YUV_YV12  = 131,
    COLOR_BGR2YUV_YV12  = 132,
    COLOR_RGBA2YUV_YV12 = 133,
    COLOR_BGRA2YUV_YV12 = 134,

    COLOR_COLORCVT_MAX  = 135
};


//! converts image from one color space to another
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn=0 );

//! raster image moments
class CV_EXPORTS_W_MAP Moments
{
public:
    //! the default constructor
    Moments();
    //! the full constructor
    Moments(double m00, double m10, double m01, double m20, double m11,
            double m02, double m30, double m21, double m12, double m03 );
    //! the conversion from CvMoments
    Moments( const CvMoments& moments );
    //! the conversion to CvMoments
    operator CvMoments() const;

    //! spatial moments
    CV_PROP_RW double  m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
    //! central moments
    CV_PROP_RW double  mu20, mu11, mu02, mu30, mu21, mu12, mu03;
    //! central normalized moments
    CV_PROP_RW double  nu20, nu11, nu02, nu30, nu21, nu12, nu03;
};

//! computes moments of the rasterized shape or a vector of points
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage=false );

//! computes 7 Hu invariants from the moments
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
CV_EXPORTS_W void HuMoments( const Moments& m, CV_OUT OutputArray hu );

//! type of the template matching operation
enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };

//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
                                 OutputArray result, int method );

//! mode of the contour retrieval algorithm
enum
{
    RETR_EXTERNAL=CV_RETR_EXTERNAL, //!< retrieve only the most external (top-level) contours
    RETR_LIST=CV_RETR_LIST, //!< retrieve all the contours without any hierarchical information
    RETR_CCOMP=CV_RETR_CCOMP, //!< retrieve the connected components (that can possibly be nested)
    RETR_TREE=CV_RETR_TREE, //!< retrieve all the contours and the whole hierarchy
    RETR_FLOODFILL=CV_RETR_FLOODFILL
};

//! the contour approximation algorithm
enum
{
    CHAIN_APPROX_NONE=CV_CHAIN_APPROX_NONE,
    CHAIN_APPROX_SIMPLE=CV_CHAIN_APPROX_SIMPLE,
    CHAIN_APPROX_TC89_L1=CV_CHAIN_APPROX_TC89_L1,
    CHAIN_APPROX_TC89_KCOS=CV_CHAIN_APPROX_TC89_KCOS
};

//! retrieves contours and the hierarchical information from black-n-white image.
CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,
                              OutputArray hierarchy, int mode,
                              int method, Point offset=Point());

//! retrieves contours from black-n-white image.
CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
                              int mode, int method, Point offset=Point());

//! draws contours in the image
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
                              int contourIdx, const Scalar& color,
                              int thickness=1, int lineType=8,
                              InputArray hierarchy=noArray(),
                              int maxLevel=INT_MAX, Point offset=Point() );

//! approximates contour or a curve using Douglas-Peucker algorithm
CV_EXPORTS_W void approxPolyDP( InputArray curve,
                                OutputArray approxCurve,
                                double epsilon, bool closed );

//! computes the contour perimeter (closed=true) or a curve length
CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
//! computes the bounding rectangle for a contour
CV_EXPORTS_W Rect boundingRect( InputArray points );
//! computes the contour area
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented=false );
//! computes the minimal rotated rectangle for a set of points
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
//! computes the minimal enclosing circle for a set of points
CV_EXPORTS_W void minEnclosingCircle( InputArray points,
                                      CV_OUT Point2f& center, CV_OUT float& radius );
//! matches two contours using one of the available algorithms
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
                                 int method, double parameter );
//! computes convex hull for a set of 2D points.
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
                              bool clockwise=false, bool returnPoints=true );
//! computes the contour convexity defects
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );

//! returns true if the contour is convex. Does not support contours with self-intersection
CV_EXPORTS_W bool isContourConvex( InputArray contour );

//! finds intersection of two convex polygons
CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2,
                                          OutputArray _p12, bool handleNested=true );

//! fits ellipse to the set of 2D points
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );

//! fits line to the set of 2D points using M-estimator algorithm
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
                           double param, double reps, double aeps );
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );


class CV_EXPORTS_W Subdiv2D
{
public:
    enum
    {
        PTLOC_ERROR = -2,
        PTLOC_OUTSIDE_RECT = -1,
        PTLOC_INSIDE = 0,
        PTLOC_VERTEX = 1,
        PTLOC_ON_EDGE = 2
    };

    enum
    {
        NEXT_AROUND_ORG   = 0x00,
        NEXT_AROUND_DST   = 0x22,
        PREV_AROUND_ORG   = 0x11,
        PREV_AROUND_DST   = 0x33,
        NEXT_AROUND_LEFT  = 0x13,
        NEXT_AROUND_RIGHT = 0x31,
        PREV_AROUND_LEFT  = 0x20,
        PREV_AROUND_RIGHT = 0x02
    };

    CV_WRAP Subdiv2D();
    CV_WRAP Subdiv2D(Rect rect);
    CV_WRAP void initDelaunay(Rect rect);

    CV_WRAP int insert(Point2f pt);
    CV_WRAP void insert(const vector<Point2f>& ptvec);
    CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);

    CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0);
    CV_WRAP void getEdgeList(CV_OUT vector<Vec4f>& edgeList) const;
    CV_WRAP void getTriangleList(CV_OUT vector<Vec6f>& triangleList) const;
    CV_WRAP void getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList,
                                     CV_OUT vector<Point2f>& facetCenters);

    CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const;

    CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
    CV_WRAP int nextEdge(int edge) const;
    CV_WRAP int rotateEdge(int edge, int rotate) const;
    CV_WRAP int symEdge(int edge) const;
    CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const;
    CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const;

protected:
    int newEdge();
    void deleteEdge(int edge);
    int newPoint(Point2f pt, bool isvirtual, int firstEdge=0);
    void deletePoint(int vtx);
    void setEdgePoints( int edge, int orgPt, int dstPt );
    void splice( int edgeA, int edgeB );
    int connectEdges( int edgeA, int edgeB );
    void swapEdges( int edge );
    int isRightOf(Point2f pt, int edge) const;
    void calcVoronoi();
    void clearVoronoi();
    void checkSubdiv() const;

    struct CV_EXPORTS Vertex
    {
        Vertex();
        Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0);
        bool isvirtual() const;
        bool isfree() const;
        int firstEdge;
        int type;
        Point2f pt;
    };
    struct CV_EXPORTS QuadEdge
    {
        QuadEdge();
        QuadEdge(int edgeidx);
        bool isfree() const;
        int next[4];
        int pt[4];
    };

    vector<Vertex> vtx;
    vector<QuadEdge> qedges;
    int freeQEdge;
    int freePoint;
    bool validGeometry;

    int recentEdge;
    Point2f topLeft;
    Point2f bottomRight;
};

}

#endif /* __cplusplus */

#endif

/* End of file. */