This file is indexed.

/usr/include/osg/Quat is in libopenscenegraph-dev 3.2.3+dfsg1-2+b4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
 *
 * This library is open source and may be redistributed and/or modified under
 * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
 * (at your option) any later version.  The full license is in LICENSE file
 * included with this distribution, and on the openscenegraph.org website.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * OpenSceneGraph Public License for more details.
*/

#ifndef OSG_QUAT
#define OSG_QUAT 1

#include <osg/Export>
#include <osg/Vec3f>
#include <osg/Vec4f>
#include <osg/Vec3d>
#include <osg/Vec4d>

namespace osg {

class Matrixf;
class Matrixd;

/** A quaternion class. It can be used to represent an orientation in 3D space.*/
class OSG_EXPORT Quat
{

    public:

        typedef double value_type;

        value_type  _v[4];    // a four-vector

        inline Quat() { _v[0]=0.0; _v[1]=0.0; _v[2]=0.0; _v[3]=1.0; }

        inline Quat( value_type x, value_type y, value_type z, value_type w )
        {
            _v[0]=x;
            _v[1]=y;
            _v[2]=z;
            _v[3]=w;
        }

        inline Quat( const Vec4f& v )
        {
            _v[0]=v.x();
            _v[1]=v.y();
            _v[2]=v.z();
            _v[3]=v.w();
        }

        inline Quat( const Vec4d& v )
        {
            _v[0]=v.x();
            _v[1]=v.y();
            _v[2]=v.z();
            _v[3]=v.w();
        }

        inline Quat( value_type angle, const Vec3f& axis)
        {
            makeRotate(angle,axis);
        }
        inline Quat( value_type angle, const Vec3d& axis)
        {
            makeRotate(angle,axis);
        }

        inline Quat( value_type angle1, const Vec3f& axis1,
                     value_type angle2, const Vec3f& axis2,
                     value_type angle3, const Vec3f& axis3)
        {
            makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
        }

        inline Quat( value_type angle1, const Vec3d& axis1,
                     value_type angle2, const Vec3d& axis2,
                     value_type angle3, const Vec3d& axis3)
        {
            makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
        }

        inline Quat& operator = (const Quat& v) { _v[0]=v._v[0];  _v[1]=v._v[1]; _v[2]=v._v[2]; _v[3]=v._v[3]; return *this; }

        inline bool operator == (const Quat& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2] && _v[3]==v._v[3]; }

        inline bool operator != (const Quat& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2] || _v[3]!=v._v[3]; }

        inline bool operator <  (const Quat& v) const
        {
            if (_v[0]<v._v[0]) return true;
            else if (_v[0]>v._v[0]) return false;
            else if (_v[1]<v._v[1]) return true;
            else if (_v[1]>v._v[1]) return false;
            else if (_v[2]<v._v[2]) return true;
            else if (_v[2]>v._v[2]) return false;
            else return (_v[3]<v._v[3]);
        }

        /* ----------------------------------
           Methods to access data members
        ---------------------------------- */

        inline Vec4d asVec4() const
        {
            return Vec4d(_v[0], _v[1], _v[2], _v[3]);
        }

        inline Vec3d asVec3() const
        {
            return Vec3d(_v[0], _v[1], _v[2]);
        }

        inline void set(value_type x, value_type y, value_type z, value_type w)
        {
            _v[0]=x;
            _v[1]=y;
            _v[2]=z;
            _v[3]=w;
        }

        inline void set(const osg::Vec4f& v)
        {
            _v[0]=v.x();
            _v[1]=v.y();
            _v[2]=v.z();
            _v[3]=v.w();
        }

        inline void set(const osg::Vec4d& v)
        {
            _v[0]=v.x();
            _v[1]=v.y();
            _v[2]=v.z();
            _v[3]=v.w();
        }

        void set(const Matrixf& matrix);

        void set(const Matrixd& matrix);

        void get(Matrixf& matrix) const;

        void get(Matrixd& matrix) const;


        inline value_type & operator [] (int i) { return _v[i]; }
        inline value_type   operator [] (int i) const { return _v[i]; }

        inline value_type & x() { return _v[0]; }
        inline value_type & y() { return _v[1]; }
        inline value_type & z() { return _v[2]; }
        inline value_type & w() { return _v[3]; }

        inline value_type x() const { return _v[0]; }
        inline value_type y() const { return _v[1]; }
        inline value_type z() const { return _v[2]; }
        inline value_type w() const { return _v[3]; }

        /** return true if the Quat represents a zero rotation, and therefore can be ignored in computations.*/
        bool zeroRotation() const { return _v[0]==0.0 && _v[1]==0.0 && _v[2]==0.0 && _v[3]==1.0; }


         /* -------------------------------------------------------------
                   BASIC ARITHMETIC METHODS
        Implemented in terms of Vec4s.  Some Vec4 operators, e.g.
        operator* are not appropriate for quaternions (as
        mathematical objects) so they are implemented differently.
        Also define methods for conjugate and the multiplicative inverse.
        ------------------------------------------------------------- */
        /// Multiply by scalar
        inline const Quat operator * (value_type rhs) const
        {
            return Quat(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs, _v[3]*rhs);
        }

        /// Unary multiply by scalar
        inline Quat& operator *= (value_type rhs)
        {
            _v[0]*=rhs;
            _v[1]*=rhs;
            _v[2]*=rhs;
            _v[3]*=rhs;
            return *this;        // enable nesting
        }

        /// Binary multiply
        inline const Quat operator*(const Quat& rhs) const
        {
            return Quat( rhs._v[3]*_v[0] + rhs._v[0]*_v[3] + rhs._v[1]*_v[2] - rhs._v[2]*_v[1],
                 rhs._v[3]*_v[1] - rhs._v[0]*_v[2] + rhs._v[1]*_v[3] + rhs._v[2]*_v[0],
                 rhs._v[3]*_v[2] + rhs._v[0]*_v[1] - rhs._v[1]*_v[0] + rhs._v[2]*_v[3],
                 rhs._v[3]*_v[3] - rhs._v[0]*_v[0] - rhs._v[1]*_v[1] - rhs._v[2]*_v[2] );
        }

        /// Unary multiply
        inline Quat& operator*=(const Quat& rhs)
        {
            value_type x = rhs._v[3]*_v[0] + rhs._v[0]*_v[3] + rhs._v[1]*_v[2] - rhs._v[2]*_v[1];
            value_type y = rhs._v[3]*_v[1] - rhs._v[0]*_v[2] + rhs._v[1]*_v[3] + rhs._v[2]*_v[0];
            value_type z = rhs._v[3]*_v[2] + rhs._v[0]*_v[1] - rhs._v[1]*_v[0] + rhs._v[2]*_v[3];
            _v[3]   = rhs._v[3]*_v[3] - rhs._v[0]*_v[0] - rhs._v[1]*_v[1] - rhs._v[2]*_v[2];

            _v[2] = z;
            _v[1] = y;
            _v[0] = x;

            return (*this);            // enable nesting
        }

        /// Divide by scalar
        inline Quat operator / (value_type rhs) const
        {
            value_type div = 1.0/rhs;
            return Quat(_v[0]*div, _v[1]*div, _v[2]*div, _v[3]*div);
        }

        /// Unary divide by scalar
        inline Quat& operator /= (value_type rhs)
        {
            value_type div = 1.0/rhs;
            _v[0]*=div;
            _v[1]*=div;
            _v[2]*=div;
            _v[3]*=div;
            return *this;
        }

        /// Binary divide
        inline const Quat operator/(const Quat& denom) const
        {
            return ( (*this) * denom.inverse() );
        }

        /// Unary divide
        inline Quat& operator/=(const Quat& denom)
        {
            (*this) = (*this) * denom.inverse();
            return (*this);            // enable nesting
        }

        /// Binary addition
        inline const Quat operator + (const Quat& rhs) const
        {
            return Quat(_v[0]+rhs._v[0], _v[1]+rhs._v[1],
                _v[2]+rhs._v[2], _v[3]+rhs._v[3]);
        }

        /// Unary addition
        inline Quat& operator += (const Quat& rhs)
        {
            _v[0] += rhs._v[0];
            _v[1] += rhs._v[1];
            _v[2] += rhs._v[2];
            _v[3] += rhs._v[3];
            return *this;            // enable nesting
        }

        /// Binary subtraction
        inline const Quat operator - (const Quat& rhs) const
        {
            return Quat(_v[0]-rhs._v[0], _v[1]-rhs._v[1],
                _v[2]-rhs._v[2], _v[3]-rhs._v[3] );
        }

        /// Unary subtraction
        inline Quat& operator -= (const Quat& rhs)
        {
            _v[0]-=rhs._v[0];
            _v[1]-=rhs._v[1];
            _v[2]-=rhs._v[2];
            _v[3]-=rhs._v[3];
            return *this;            // enable nesting
        }

        /** Negation operator - returns the negative of the quaternion.
        Basically just calls operator - () on the Vec4 */
        inline const Quat operator - () const
        {
            return Quat (-_v[0], -_v[1], -_v[2], -_v[3]);
        }

        /// Length of the quaternion = sqrt( vec . vec )
        value_type length() const
        {
            return sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]);
        }

        /// Length of the quaternion = vec . vec
        value_type length2() const
        {
            return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
        }

        /// Conjugate
        inline Quat conj () const
        {
             return Quat( -_v[0], -_v[1], -_v[2], _v[3] );
        }

        /// Multiplicative inverse method: q^(-1) = q^*/(q.q^*)
        inline const Quat inverse () const
        {
             return conj() / length2();
         }

      /* --------------------------------------------------------
               METHODS RELATED TO ROTATIONS
        Set a quaternion which will perform a rotation of an
        angle around the axis given by the vector (x,y,z).
        Should be written to also accept an angle and a Vec3?

        Define Spherical Linear interpolation method also

        Not inlined - see the Quat.cpp file for implementation
        -------------------------------------------------------- */
        void makeRotate( value_type  angle,
                          value_type  x, value_type  y, value_type  z );
        void makeRotate ( value_type  angle, const Vec3f& vec );
        void makeRotate ( value_type  angle, const Vec3d& vec );

        void makeRotate ( value_type  angle1, const Vec3f& axis1,
                          value_type  angle2, const Vec3f& axis2,
                          value_type  angle3, const Vec3f& axis3);
        void makeRotate ( value_type  angle1, const Vec3d& axis1,
                          value_type  angle2, const Vec3d& axis2,
                          value_type  angle3, const Vec3d& axis3);

        /** Make a rotation Quat which will rotate vec1 to vec2.
            Generally take a dot product to get the angle between these
            and then use a cross product to get the rotation axis
            Watch out for the two special cases when the vectors
            are co-incident or opposite in direction.*/
        void makeRotate( const Vec3f& vec1, const Vec3f& vec2 );
        /** Make a rotation Quat which will rotate vec1 to vec2.
            Generally take a dot product to get the angle between these
            and then use a cross product to get the rotation axis
            Watch out for the two special cases of when the vectors
            are co-incident or opposite in direction.*/
        void makeRotate( const Vec3d& vec1, const Vec3d& vec2 );

        void makeRotate_original( const Vec3d& vec1, const Vec3d& vec2 );

        /** Return the angle and vector components represented by the quaternion.*/
        void getRotate ( value_type & angle, value_type & x, value_type & y, value_type & z ) const;

        /** Return the angle and vector represented by the quaternion.*/
        void getRotate ( value_type & angle, Vec3f& vec ) const;

        /** Return the angle and vector represented by the quaternion.*/
        void getRotate ( value_type & angle, Vec3d& vec ) const;

        /** Spherical Linear Interpolation.
        As t goes from 0 to 1, the Quat object goes from "from" to "to". */
        void slerp   ( value_type  t, const Quat& from, const Quat& to);

        /** Rotate a vector by this quaternion.*/
        Vec3f operator* (const Vec3f& v) const
        {
            // nVidia SDK implementation
            Vec3f uv, uuv;
            Vec3f qvec(_v[0], _v[1], _v[2]);
            uv = qvec ^ v;
            uuv = qvec ^ uv;
            uv *= ( 2.0f * _v[3] );
            uuv *= 2.0f;
            return v + uv + uuv;
        }

        /** Rotate a vector by this quaternion.*/
        Vec3d operator* (const Vec3d& v) const
        {
            // nVidia SDK implementation
            Vec3d uv, uuv;
            Vec3d qvec(_v[0], _v[1], _v[2]);
            uv = qvec ^ v;
            uuv = qvec ^ uv;
            uv *= ( 2.0f * _v[3] );
            uuv *= 2.0f;
            return v + uv + uuv;
        }

    protected:

};    // end of class prototype

}    // end of namespace

#endif