This file is indexed.

/usr/include/osg/Vec4f is in libopenscenegraph-dev 3.2.3+dfsg1-2+b4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
 *
 * This library is open source and may be redistributed and/or modified under
 * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
 * (at your option) any later version.  The full license is in LICENSE file
 * included with this distribution, and on the openscenegraph.org website.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * OpenSceneGraph Public License for more details.
*/

#ifndef OSG_VEC4F
#define OSG_VEC4F 1

#include <osg/Vec3f>

namespace osg {

/** General purpose float quad. Uses include representation
  * of color coordinates.
  * No support yet added for float * Vec4f - is it necessary?
  * Need to define a non-member non-friend operator*  etc.
  *    Vec4f * float is okay
*/
class Vec4f
{
    public:

        /** Data type of vector components.*/
        typedef float value_type;

        /** Number of vector components. */
        enum { num_components = 4 };

        /** Vec member variable. */
        value_type _v[4];

        // Methods are defined here so that they are implicitly inlined

        /** Constructor that sets all components of the vector to zero */
        Vec4f() { _v[0]=0.0f; _v[1]=0.0f; _v[2]=0.0f; _v[3]=0.0f;}

        Vec4f(value_type x, value_type y, value_type z, value_type w)
        {
            _v[0]=x;
            _v[1]=y;
            _v[2]=z;
            _v[3]=w;
        }

        Vec4f(const Vec3f& v3,value_type w)
        {
            _v[0]=v3[0];
            _v[1]=v3[1];
            _v[2]=v3[2];
            _v[3]=w;
        }

        inline bool operator == (const Vec4f& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2] && _v[3]==v._v[3]; }

        inline bool operator != (const Vec4f& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2] || _v[3]!=v._v[3]; }

        inline bool operator <  (const Vec4f& v) const
        {
            if (_v[0]<v._v[0]) return true;
            else if (_v[0]>v._v[0]) return false;
            else if (_v[1]<v._v[1]) return true;
            else if (_v[1]>v._v[1]) return false;
            else if (_v[2]<v._v[2]) return true;
            else if (_v[2]>v._v[2]) return false;
            else return (_v[3]<v._v[3]);
        }

        inline value_type* ptr() { return _v; }
        inline const value_type* ptr() const { return _v; }

        inline void set( value_type x, value_type y, value_type z, value_type w)
        {
            _v[0]=x; _v[1]=y; _v[2]=z; _v[3]=w;
        }

        inline value_type& operator [] (unsigned int i) { return _v[i]; }
        inline value_type  operator [] (unsigned int i) const { return _v[i]; }

        inline value_type& x() { return _v[0]; }
        inline value_type& y() { return _v[1]; }
        inline value_type& z() { return _v[2]; }
        inline value_type& w() { return _v[3]; }

        inline value_type x() const { return _v[0]; }
        inline value_type y() const { return _v[1]; }
        inline value_type z() const { return _v[2]; }
        inline value_type w() const { return _v[3]; }

        inline value_type& r() { return _v[0]; }
        inline value_type& g() { return _v[1]; }
        inline value_type& b() { return _v[2]; }
        inline value_type& a() { return _v[3]; }

        inline value_type r() const { return _v[0]; }
        inline value_type g() const { return _v[1]; }
        inline value_type b() const { return _v[2]; }
        inline value_type a() const { return _v[3]; }

        inline unsigned int asABGR() const
        {
            return (unsigned int)clampTo((_v[0]*255.0f),0.0f,255.0f)<<24 |
                   (unsigned int)clampTo((_v[1]*255.0f),0.0f,255.0f)<<16 |
                   (unsigned int)clampTo((_v[2]*255.0f),0.0f,255.0f)<<8  |
                   (unsigned int)clampTo((_v[3]*255.0f),0.0f,255.0f);
        }

        inline unsigned int asRGBA() const
        {
            return (unsigned int)clampTo((_v[3]*255.0f),0.0f,255.0f)<<24 |
                   (unsigned int)clampTo((_v[2]*255.0f),0.0f,255.0f)<<16 |
                   (unsigned int)clampTo((_v[1]*255.0f),0.0f,255.0f)<<8  |
                   (unsigned int)clampTo((_v[0]*255.0f),0.0f,255.0f);
        }

        /** Returns true if all components have values that are not NaN. */
        inline bool valid() const { return !isNaN(); }
        /** Returns true if at least one component has value NaN. */
        inline bool isNaN() const { return osg::isNaN(_v[0]) || osg::isNaN(_v[1]) || osg::isNaN(_v[2]) || osg::isNaN(_v[3]); }

        /** Dot product. */
        inline value_type operator * (const Vec4f& rhs) const
        {
            return _v[0]*rhs._v[0]+
                   _v[1]*rhs._v[1]+
                   _v[2]*rhs._v[2]+
                   _v[3]*rhs._v[3] ;
        }

        /** Multiply by scalar. */
        inline Vec4f operator * (value_type rhs) const
        {
            return Vec4f(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs, _v[3]*rhs);
        }

        /** Unary multiply by scalar. */
        inline Vec4f& operator *= (value_type rhs)
        {
            _v[0]*=rhs;
            _v[1]*=rhs;
            _v[2]*=rhs;
            _v[3]*=rhs;
            return *this;
        }

        /** Divide by scalar. */
        inline Vec4f operator / (value_type rhs) const
        {
            return Vec4f(_v[0]/rhs, _v[1]/rhs, _v[2]/rhs, _v[3]/rhs);
        }

        /** Unary divide by scalar. */
        inline Vec4f& operator /= (value_type rhs)
        {
            _v[0]/=rhs;
            _v[1]/=rhs;
            _v[2]/=rhs;
            _v[3]/=rhs;
            return *this;
        }

        /** Binary vector add. */
        inline Vec4f operator + (const Vec4f& rhs) const
        {
            return Vec4f(_v[0]+rhs._v[0], _v[1]+rhs._v[1],
                         _v[2]+rhs._v[2], _v[3]+rhs._v[3]);
        }

        /** Unary vector add. Slightly more efficient because no temporary
          * intermediate object.
        */
        inline Vec4f& operator += (const Vec4f& rhs)
        {
            _v[0] += rhs._v[0];
            _v[1] += rhs._v[1];
            _v[2] += rhs._v[2];
            _v[3] += rhs._v[3];
            return *this;
        }

        /** Binary vector subtract. */
        inline Vec4f operator - (const Vec4f& rhs) const
        {
            return Vec4f(_v[0]-rhs._v[0], _v[1]-rhs._v[1],
                         _v[2]-rhs._v[2], _v[3]-rhs._v[3] );
        }

        /** Unary vector subtract. */
        inline Vec4f& operator -= (const Vec4f& rhs)
        {
            _v[0]-=rhs._v[0];
            _v[1]-=rhs._v[1];
            _v[2]-=rhs._v[2];
            _v[3]-=rhs._v[3];
            return *this;
        }

        /** Negation operator. Returns the negative of the Vec4f. */
        inline const Vec4f operator - () const
        {
            return Vec4f (-_v[0], -_v[1], -_v[2], -_v[3]);
        }

        /** Length of the vector = sqrt( vec . vec ) */
        inline value_type length() const
        {
            return sqrtf( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]);
        }

        /** Length squared of the vector = vec . vec */
        inline value_type length2() const
        {
            return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
        }

        /** Normalize the vector so that it has length unity.
          * Returns the previous length of the vector.
        */
        inline value_type normalize()
        {
            value_type norm = Vec4f::length();
            if (norm>0.0f)
            {
                value_type inv = 1.0f/norm;
                _v[0] *= inv;
                _v[1] *= inv;
                _v[2] *= inv;
                _v[3] *= inv;
            }
            return( norm );
        }

};    // end of class Vec4f

/** Compute the dot product of a (Vec3,1.0) and a Vec4f. */
inline Vec4f::value_type operator * (const Vec3f& lhs,const Vec4f& rhs)
{
    return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+rhs[3];
}

/** Compute the dot product of a Vec4f and a (Vec3,1.0). */
inline Vec4f::value_type operator * (const Vec4f& lhs,const Vec3f& rhs)
{
    return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+lhs[3];
}

/** multiply by vector components. */
inline Vec4f componentMultiply(const Vec4f& lhs, const Vec4f& rhs)
{
    return Vec4f(lhs[0]*rhs[0], lhs[1]*rhs[1], lhs[2]*rhs[2], lhs[3]*rhs[3]);
}

/** divide rhs components by rhs vector components. */
inline Vec4f componentDivide(const Vec4f& lhs, const Vec4f& rhs)
{
    return Vec4f(lhs[0]/rhs[0], lhs[1]/rhs[1], lhs[2]/rhs[2], lhs[3]/rhs[3]);
}

}    // end of namespace osg

#endif