/usr/include/SurgSim/Math/GaussLegendreQuadrature.h is in libopensurgsim-dev 0.7.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | // This file is a part of the OpenSurgSim project.
// Copyright 2012-2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// \file
/// Definitions of a n-point Gaussian quadrature rule (a.k.a. Gauss-Legendre quadrature rule)
/// http://en.wikipedia.org/wiki/Gaussian_quadrature
#ifndef SURGSIM_MATH_GAUSSLEGENDREQUADRATURE_H
#define SURGSIM_MATH_GAUSSLEGENDREQUADRATURE_H
#include <array>
#include <utility>
namespace SurgSim
{
namespace Math
{
/// 1D Gauss-Legendre quadrature
struct gaussQuadraturePoint
{
gaussQuadraturePoint(double p, double w) : point(p), weight(w){}
const double point;
const double weight;
};
/// 2D Gauss-Legendre quadrature on a triangle
/// \note In a triangle ABC, a point \f$P\f$ is defined by its parametrized coordinate \f$(\xi, \eta)\f$ as
/// \note \f$P = A + \xi.AB + \eta.AC\f$
struct gaussQuadratureTrianglePoint
{
gaussQuadratureTrianglePoint(double xi, double eta, double w) : coordinateXi(xi), coordinateEta(eta), weight(w){}
const double coordinateXi; ///< \f$\xi \in [0, 1]\f$, must verify \f$\xi + \eta \leq 1.0\f$
const double coordinateEta; ///< \f$\eta \in [0, 1]\f$, must verify \f$\xi + \eta \leq 1.0\f$
const double weight;
};
/// 1D 1-point Gauss-Legendre quadrature \f${<x_1, w_1>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 1> gaussQuadrature1Point;
/// 1D 2-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 2> gaussQuadrature2Points;
/// 1D 3-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>, <x_3, w_3>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 3> gaussQuadrature3Points;
/// 1D 4-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>, <x_3, w_3>, <x_4, w_4>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 4> gaussQuadrature4Points;
/// 1D 5-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>, <x_3, w_3>, <x_4, w_4>, <x_5, w_5>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 5> gaussQuadrature5Points;
/// 1D 100-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>, <x_3, w_3>, ..., <x_{100}, w_{100}>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 100> gaussQuadrature100Points;
// http://math2.uncc.edu/~shaodeng/TEACHING/math5172/Lectures/Lect_15.PDF
// "Quadrature Formulas in Two Dimensions"
// \int_0^1 \int_0^{1-eta} f(xi, eta) dxi deta = 1/2 sum_i w[i] f(xi[i], eta[i])
/// 2D triangle Gauss-Legendre quadrature 3-points \f${<\xi_1, \eta_1, w_1>, ..., <\xi_3, \eta_3, w_3>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f(\xi, \eta)\f$ with a
/// finite sum using some weights and specific points on the triangle.
/// \note \f$\int_{0}^{1} \int_{0}^{1-\eta} f(\xi, \eta) d\xi d\eta = \sum_{i=1}^n w_i f(\xi_i, \eta_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$(\xi_i, \eta_i)\f$ is the parametrized location of the triangle point to evaluate the function with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point
/// \note A 3-points Gauss-Legendre quadrature on the triangle is exact for polynomial functions of degree 2 or less.
extern const std::array<gaussQuadratureTrianglePoint, 3> gaussQuadrature2DTriangle3Points;
/// 2D triangle Gauss-Legendre quadrature 6-points \f${<\xi_1, \eta_1, w_1>, ..., <\xi_6, \eta_6, w_6>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f(\xi, \eta)\f$ with a
/// finite sum using some weights and specific points on the triangle.
/// \note \f$\int_{0}^{1} \int_{0}^{1-\eta} f(\xi, \eta) d\xi d\eta = \sum_{i=1}^n w_i f(\xi_i, \eta_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$(\xi_i, \eta_i)\f$ is the parametrized location of the triangle point to evaluate the function with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point
/// \note A 6-points Gauss-Legendre quadrature on the triangle is exact for polynomial functions of degree 4 or less.
extern const std::array<gaussQuadratureTrianglePoint, 6> gaussQuadrature2DTriangle6Points;
/// 2D triangle Gauss-Legendre quadrature 12-points \f${<\xi_1, \eta_1, w_1>, ..., <\xi_{12}, \eta_{12}, w_{12}>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f(\xi, \eta)\f$ with a
/// finite sum using some weights and specific points on the triangle.
/// \note \f$\int_{0}^{1} \int_{0}^{1-\eta} f(\xi, \eta) d\xi d\eta = \sum_{i=1}^n w_i f(\xi_i, \eta_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$(\xi_i, \eta_i)\f$ is the parametrized location of the triangle point to evaluate the function with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point
/// \note A 12-points Gauss-Legendre quadrature on the triangle is exact for polynomial functions of degree 6 or less.
extern const std::array<gaussQuadratureTrianglePoint, 12> gaussQuadrature2DTriangle12Points;
}; // namespace Math
}; // namespace SurgSim
#endif // SURGSIM_MATH_GAUSSLEGENDREQUADRATURE_H
|