This file is indexed.

/usr/include/SurgSim/Math/GaussLegendreQuadrature.h is in libopensurgsim-dev 0.7.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// This file is a part of the OpenSurgSim project.
// Copyright 2012-2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/// \file
/// Definitions of a n-point Gaussian quadrature rule (a.k.a. Gauss-Legendre quadrature rule)
/// http://en.wikipedia.org/wiki/Gaussian_quadrature

#ifndef SURGSIM_MATH_GAUSSLEGENDREQUADRATURE_H
#define SURGSIM_MATH_GAUSSLEGENDREQUADRATURE_H

#include <array>
#include <utility>

namespace SurgSim
{
namespace Math
{

/// 1D Gauss-Legendre quadrature
struct gaussQuadraturePoint
{
	gaussQuadraturePoint(double p, double w) : point(p), weight(w){}

	const double point;
	const double weight;
};

/// 2D Gauss-Legendre quadrature on a triangle
/// \note In a triangle ABC, a point \f$P\f$ is defined by its parametrized coordinate \f$(\xi, \eta)\f$ as
/// \note \f$P = A + \xi.AB + \eta.AC\f$
struct gaussQuadratureTrianglePoint
{
	gaussQuadratureTrianglePoint(double xi, double eta, double w) : coordinateXi(xi), coordinateEta(eta), weight(w){}

	const double coordinateXi;  ///< \f$\xi  \in [0, 1]\f$, must verify \f$\xi + \eta \leq 1.0\f$
	const double coordinateEta; ///< \f$\eta \in [0, 1]\f$, must verify \f$\xi + \eta \leq 1.0\f$
	const double weight;
};

/// 1D 1-point Gauss-Legendre quadrature \f${<x_1, w_1>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 1> gaussQuadrature1Point;

/// 1D 2-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 2> gaussQuadrature2Points;

/// 1D 3-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>, <x_3, w_3>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 3> gaussQuadrature3Points;

/// 1D 4-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>, <x_3, w_3>, <x_4, w_4>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 4> gaussQuadrature4Points;

/// 1D 5-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>, <x_3, w_3>, <x_4, w_4>, <x_5, w_5>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 5> gaussQuadrature5Points;

/// 1D 100-points Gauss-Legendre quadrature \f${<x_1, w_1>, <x_2, w_2>, <x_3, w_3>, ..., <x_{100}, w_{100}>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f\f$ with a finite sum
/// using some weights and specific points of evaluation of the function \f$f\f$:
/// \note \f$\int_{-1}^{+1} f(x) dx = \sum_{i=1}^n w_i f(x_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$x_i\f$ is the point to evaluate the function \f$f\f$ with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point \f$x_i\f$
extern const std::array<gaussQuadraturePoint, 100> gaussQuadrature100Points;

// http://math2.uncc.edu/~shaodeng/TEACHING/math5172/Lectures/Lect_15.PDF
// "Quadrature Formulas in Two Dimensions"
// \int_0^1 \int_0^{1-eta} f(xi, eta) dxi deta = 1/2 sum_i w[i] f(xi[i], eta[i])

/// 2D triangle Gauss-Legendre quadrature 3-points \f${<\xi_1, \eta_1, w_1>, ..., <\xi_3, \eta_3, w_3>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f(\xi, \eta)\f$ with a
/// finite sum using some weights and specific points on the triangle.
/// \note \f$\int_{0}^{1} \int_{0}^{1-\eta} f(\xi, \eta) d\xi d\eta = \sum_{i=1}^n w_i f(\xi_i, \eta_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$(\xi_i, \eta_i)\f$ is the parametrized location of the triangle point to evaluate the function with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point
/// \note A 3-points Gauss-Legendre quadrature on the triangle is exact for polynomial functions of degree 2 or less.
extern const std::array<gaussQuadratureTrianglePoint, 3> gaussQuadrature2DTriangle3Points;

/// 2D triangle Gauss-Legendre quadrature 6-points \f${<\xi_1, \eta_1, w_1>, ..., <\xi_6, \eta_6, w_6>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f(\xi, \eta)\f$ with a
/// finite sum using some weights and specific points on the triangle.
/// \note \f$\int_{0}^{1} \int_{0}^{1-\eta} f(\xi, \eta) d\xi d\eta = \sum_{i=1}^n w_i f(\xi_i, \eta_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$(\xi_i, \eta_i)\f$ is the parametrized location of the triangle point to evaluate the function with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point
/// \note A 6-points Gauss-Legendre quadrature on the triangle is exact for polynomial functions of degree 4 or less.
extern const std::array<gaussQuadratureTrianglePoint, 6> gaussQuadrature2DTriangle6Points;

/// 2D triangle Gauss-Legendre quadrature 12-points \f${<\xi_1, \eta_1, w_1>, ..., <\xi_{12}, \eta_{12}, w_{12}>}\f$
/// \note Gauss-Legendre quadrature numerically evaluates the integral of a function \f$f(\xi, \eta)\f$ with a
/// finite sum using some weights and specific points on the triangle.
/// \note \f$\int_{0}^{1} \int_{0}^{1-\eta} f(\xi, \eta) d\xi d\eta = \sum_{i=1}^n w_i f(\xi_i, \eta_i)\f$
/// \note n is the number of points used to discretized the integral
/// \note \f$(\xi_i, \eta_i)\f$ is the parametrized location of the triangle point to evaluate the function with
/// \note \f$w_i\f$ is the weight to assign to the function evaluation at the given point
/// \note A 12-points Gauss-Legendre quadrature on the triangle is exact for polynomial functions of degree 6 or less.
extern const std::array<gaussQuadratureTrianglePoint, 12> gaussQuadrature2DTriangle12Points;

};  // namespace Math
};  // namespace SurgSim

#endif  // SURGSIM_MATH_GAUSSLEGENDREQUADRATURE_H