This file is indexed.

/usr/include/SurgSim/Math/Polynomial.h is in libopensurgsim-dev 0.7.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// This file is a part of the OpenSurgSim project.
// Copyright 2013-2016, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_POLYNOMIAL_H
#define SURGSIM_MATH_POLYNOMIAL_H

#include <iostream>

namespace SurgSim
{
namespace Math
{

namespace
{
double polynomial_epsilon = 1.0e-09;
}

/// Define an utility function for comparing individual coefficients to 0.
///
/// \tparam T underlying data type used as either the scalar or as the data type
/// for the interval
/// \param value the value to compare
/// \param epsilon the tolerance
/// \return true if the value is within epsilon of 0
template <typename T>
bool isNearZero(const T& value, const T& epsilon = static_cast<T>(polynomial_epsilon));

/// Polynomial<T, N> defines the concept of an N degree polynomial with type T
/// coefficients and provides operations on them including arithmetic operations,
/// construction, and IO.
///
/// \tparam T underlying data type over which the interval is defined.
/// \tparam N degree of the Polynomial
template <typename T, int N> class Polynomial
{
	static_assert(N >= 0, "Polynomials must have degree >= 0.");
	static_assert(N <= 3, "Polynomials of degree > 3 are not yet supported.");
};

/// Polynomial<T, 0> specializes the Polynomial class for degree 0 (constant polynomials)
/// \sa Polynomial<T, N>
template <typename T>
class Polynomial<T, 0>
{
public:
	/// Constructor
	Polynomial();

	/// Constructor
	/// \param a0 coefficient of the 0 degree term
	explicit Polynomial(const T& a0);

	/// Evaluate the polynomial at a point
	/// \param x point at which to evaluate the polynomial
	/// \return the value of the polynomial at x
	T evaluate(const T& x) const;

	/// Evaluate the polynomial at a point
	/// \param x point at which to evaluate the polynomial
	/// \return the value of the polynomial at x
	T operator()(const T& x) const;

	/// @{
	/// Standard arithmetic operators extended to intervals
	T& operator[](const size_t i);
	const T& operator[](const size_t i) const;
	Polynomial<T, 0> operator- () const;
	Polynomial<T, 0> operator+ (const Polynomial<T, 0>& rhs) const;
	Polynomial<T, 0>& operator+= (const Polynomial<T, 0>& rhs);
	Polynomial<T, 0> operator- (const Polynomial<T, 0>& rhs) const;
	Polynomial<T, 0>& operator-= (const Polynomial<T, 0>& rhs);
	/// @}

	/// \param epsilon the closeness parameter
	/// \return true if all coefficients of the polynomial are within an epsilon of 0
	bool isNearZero(const T& epsilon = static_cast<T>(polynomial_epsilon)) const;

	/// \param p the test polynomial
	/// \param epsilon the closeness parameter
	/// \return true if all the coefficients of the current polynomial are within an epsilon of
	/// the corresponding coefficient in p
	bool isApprox(const Polynomial<T, 0>& p, const T& epsilon) const;

	/// \param i index of the desired coefficient
	/// \return the value of coefficient i
	T getCoefficient(size_t i) const;

	/// Set a specified coefficient to a desired value
	/// \param i index of the desired coefficient
	/// \param value the value to be set in the coefficient
	/// \exception if i is greater than the polynomial degree
	void setCoefficient(size_t i, const T& value);

private:
	/// @{
	/// Coefficient of the polynomial
	T m_a0;
	/// @}
};

/// Polynomial<T, 1> specializes the Polynomial class for degree 1 (linear polynomials)
/// \sa Polynomial<T, N>
template <typename T>
class Polynomial<T, 1>
{
public:
	/// Constructor
	Polynomial();

	/// Constructor
	/// \param a0 coefficient of the 0 degree term
	/// \param a1 coefficient of the 1 degree term
	Polynomial(const T& a0, const T& a1);

	/// Evaluate the polynomial at a point
	/// \param x point at which to evaluate the polynomial
	/// \return the value of the polynomial at x
	T evaluate(const T& x) const;

	/// Evaluate the polynomial at a point
	/// \param x point at which to evaluate the polynomial
	/// \return the value of the polynomial at x
	T operator()(const T& x) const;

	/// @{
	/// Standard arithmetic operators extended to intervals
	T& operator[](const size_t i);
	const T& operator[](const size_t i) const;
	Polynomial<T, 1> operator- () const;
	Polynomial<T, 1> operator+ (const Polynomial<T, 1>& rhs) const;
	Polynomial<T, 1>& operator+= (const Polynomial<T, 1>& rhs);
	Polynomial<T, 1> operator- (const Polynomial<T, 1>& rhs) const;
	Polynomial<T, 1>& operator-= (const Polynomial<T, 1>& rhs);
	/// @}

	/// \return the derivative of the polynomial
	Polynomial<T, 0> derivative() const;

	/// \param epsilon the closeness parameter
	/// \return true if all coefficients of the polynomial are within an epsilon of 0
	bool isNearZero(const T& epsilon = static_cast<T>(polynomial_epsilon)) const;

	/// \param p the test polynomial
	/// \param epsilon the closeness parameter
	/// \return true if all the coefficients of the current polynomial are within an epsilon of
	/// the corresponding coefficient in p
	bool isApprox(const Polynomial<T, 1>& p, const T& epsilon) const;

	/// \param i index of the desired coefficient
	/// \return the value of coefficient i
	T getCoefficient(size_t i) const;

	/// Set a specified coefficient to a desired value
	/// \param i index of the desired coefficient
	/// \param value the value to be set in the coefficient
	/// \exception if i is greater than the polynomial degree
	void setCoefficient(size_t i, const T& value);

private:
	/// @{
	/// Coefficient of the polynomial
	T m_a0;
	T m_a1;
	/// @}
};

/// Polynomial<T, 2> specializes the Polynomial class for degree 2 (quadratic polynomials)
/// \sa Polynomial<T, N>
template <typename T>
class Polynomial<T, 2>
{
public:
	/// Constructor
	Polynomial();

	/// Constructor
	/// \param a0 coefficient of the 0 degree term
	/// \param a1 coefficient of the 1 degree term
	/// \param a2 coefficient of the 2 degree term
	Polynomial(const T& a0, const T& a1, const T& a2);

	/// Evaluate the discriminant of a quadratic polynomial
	/// \return the discriminant (b^2 - a4c)
	T discriminant() const;

	/// Evaluate the polynomial at a point
	/// \param x point at which to evaluate the polynomial
	/// \return the value of the polynomial at x
	T evaluate(const T& x) const;

	/// Evaluate the polynomial at a point
	/// \param x point at which to evaluate the polynomial
	/// \return the value of the polynomial at x
	T operator()(const T& x) const;

	/// @{
	/// Standard arithmetic operators extended to intervals
	T& operator[](const size_t i);
	const T& operator[](const size_t i) const;
	Polynomial<T, 2> operator- () const;
	Polynomial<T, 2> operator+ (const Polynomial<T, 2>& rhs) const;
	Polynomial<T, 2>& operator+= (const Polynomial<T, 2>& rhs);
	Polynomial<T, 2> operator- (const Polynomial<T, 2>& rhs) const;
	Polynomial<T, 2>& operator-= (const Polynomial<T, 2>& rhs);
	/// @}

	/// \return the derivative of the polynomial
	Polynomial<T, 1> derivative() const;

	/// \param epsilon the closeness parameter
	/// \return true if all coefficients of the polynomial are within an epsilon of 0
	bool isNearZero(const T& epsilon = static_cast<T>(polynomial_epsilon)) const;

	/// \param p the test polynomial
	/// \param epsilon the closeness parameter
	/// \return true if all the coefficients of the current polynomial are within an epsilon of
	/// the corresponding coefficient in p
	bool isApprox(const Polynomial<T, 2>& p, const T& epsilon) const;

	/// \param i index of the desired coefficient
	/// \return the value of coefficient i
	T getCoefficient(size_t i) const;

	/// Set a specified coefficient to a desired value
	/// \param i index of the desired coefficient
	/// \param value the value to be set in the coefficient
	/// \exception if i is greater than the polynomial degree
	void setCoefficient(size_t i, const T& value);

private:
	/// @{
	/// Coefficient of the polynomial
	T m_a0;
	T m_a1;
	T m_a2;
	/// @}
};

/// Polynomial<T, 3> specializes the Polynomial class for degree 3 (cubic polynomials)
/// \sa Polynomial<T, N>
template <typename T>
class Polynomial<T, 3>
{
public:
	/// Constructor
	Polynomial();

	/// Constructor
	/// \param a0 coefficient of the 0 degree term
	/// \param a1 coefficient of the 1 degree term
	/// \param a2 coefficient of the 2 degree term
	/// \param a3 coefficient of the 3 degree term
	Polynomial(const T& a0, const T& a1, const T& a2, const T& a3);

	/// Evaluate the polynomial at a point
	/// \param x point at which to evaluate the polynomial
	/// \return the value of the polynomial at x
	T evaluate(const T& x) const;

	/// Evaluate the polynomial at a point
	/// \param x point at which to evaluate the polynomial
	/// \return the value of the polynomial at x
	T operator()(const T& x) const;

	/// @{
	/// Standard arithmetic operators extended to intervals
	T& operator[](const size_t i);
	const T& operator[](const size_t i) const;
	Polynomial<T, 3> operator- () const;
	Polynomial<T, 3> operator+ (const Polynomial<T, 3>& rhs) const;
	Polynomial<T, 3>& operator+= (const Polynomial<T, 3>& rhs);
	Polynomial<T, 3> operator- (const Polynomial<T, 3>& rhs) const;
	Polynomial<T, 3>& operator-= (const Polynomial<T, 3>& rhs);
	/// @}

	/// \return the derivative of the polynomial
	Polynomial<T, 2> derivative() const;

	/// \param epsilon the closeness parameter
	/// \return true if all coefficients of the polynomial are within an epsilon of 0
	bool isNearZero(const T& epsilon = static_cast<T>(polynomial_epsilon)) const;

	/// \param p the test polynomial
	/// \param epsilon the closeness parameter
	/// \return true if all the coefficients of the current polynomial are within an epsilon of
	/// the corresponding coefficient in p
	bool isApprox(const Polynomial<T, 3>& p, const T& epsilon) const;

	/// \param i index of the desired coefficient
	/// \return the value of coefficient i
	T getCoefficient(size_t i) const;

	/// Set a specified coefficient to a desired value
	/// \param i index of the desired coefficient
	/// \param value the value to be set in the coefficient
	/// \exception if i is greater than the polynomial degree
	void setCoefficient(size_t i, const T& value);

private:
	/// @{
	/// Coefficient of the polynomial
	T m_a0;
	T m_a1;
	T m_a2;
	T m_a3;
	/// @}
};

// Operators

/// Multiply two polynomials of arbitrary degree. This current implementation is limited to
/// a resulting polynomial of no more than degree 3 (i.e. N + M <= 3) because of limits in the
/// underlying polynomial representations.
/// \tparam N degree of the first polynomial
/// \tparam M degree of the second polynomial
/// \tparam T underlying data type over which the interval is defined.
/// \param p first polynomial of degree N
/// \param q second polynomial of degree M
/// \return p * q as a polynomial of degree N + M
template <typename T, int N, int M>
Polynomial < T, N + M > operator*(const Polynomial<T, N>& p, const Polynomial<T, M>& q);

/// Multiply two polynomials of degree 1.
/// \tparam T underlying data type over which the interval is defined.
/// \param p first polynomial of degree 1
/// \param q second polynomial of degree 1
/// \return p * q as a polynomial of degree 2
template <typename T>
Polynomial<T, 2> operator*(const Polynomial<T, 1>& p, const Polynomial<T, 1>& q);

/// Multiply two polynomials of degree 2 and 1 respectively.
/// \tparam T underlying data type over which the interval is defined.
/// \param p first polynomial of degree 2
/// \param q second polynomial of degree 1
/// \return p * q as a polynomial of degree 3
template <typename T>
Polynomial<T, 3> operator*(const Polynomial<T, 2>& p, const Polynomial<T, 1>& q);

/// Multiply two polynomials of degree 1 and 2 respectively.
/// \tparam T underlying data type over which the interval is defined.
/// \param p first polynomial of degree 1
/// \param q second polynomial of degree 2
/// \return p * q as a polynomial of degree 3
template <typename T>
Polynomial<T, 3> operator*(const Polynomial<T, 1>& p, const Polynomial<T, 2>& q);

/// Square a degree 0 polynomial
/// \tparam T underlying data type over which the interval is defined.
/// \param p polynomial of degree 0
/// \return p^2 as a polynomial of degree 0
template <typename T>
Polynomial<T, 0> square(const Polynomial<T, 0>& p);

/// Square a degree 1 polynomial
/// \tparam T underlying data type over which the interval is defined.
/// \param p polynomial of degree 1
/// \return p^2 as a polynomial of degree 2
template <typename T>
Polynomial<T, 2> square(const Polynomial<T, 1>& p);

/// Write a textual version of a Polynomial to an output stream
/// \tparam T underlying type of the polynomial coefficients
/// \tparam N degree of the polynomial
/// \param stream the ostream to be written to
/// \param p the polynomial to write
/// \return the active stream
template <typename T, int N>
std::ostream& operator<<(std::ostream& stream, const Polynomial<T, N>& p);

}; // Math
}; // SurgSim

#include "SurgSim/Math/Polynomial-inl.h"

#endif // SURGSIM_MATH_POLYNOMIAL_H