/usr/include/SurgSim/Math/PolynomialRoots.h is in libopensurgsim-dev 0.7.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_MATH_POLYNOMIALROOTS_H
#define SURGSIM_MATH_POLYNOMIALROOTS_H
#include <iostream>
#include <algorithm>
#include "SurgSim/Math/Polynomial.h"
namespace SurgSim
{
namespace Math
{
/// The (algebraic) roots of a Polynomial<N,T>.
/// If all coefficients of a polynomial are 0, the roots are degenerate: the polynomial equals 0 for any x.
/// Otherwise, there may be anywhere between 0 and N roots.
///
/// \tparam T type of the coefficients and computations
/// \tparam N degree of the polynomial for which roots are being calculated
/// \sa PolynomialRootsCommon<T, N>
template <typename T, int N> class PolynomialRoots;
/// The common base class for PolynomialRoots specializations for various N.
///
/// \tparam T type of the coefficients and computations
/// \tparam N degree of the polynomial for which roots are being calculated
/// \sa PolynomialRoots<T, N>
template <typename T, int N>
class PolynomialRootsCommon
{
public:
/// Indicator for a degenerate polynomial (infinite number of roots).
static const int DEGENERATE = -1;
/// \return true in the polynomial is degenerate
bool isDegenerate() const;
/// \return the number of available roots or DEGENERATE if there are infinitely many
int getNumRoots() const;
/// Read only access to the roots of the polynomial
/// \param i is the number of the root to return
/// \return the value of the ith root
/// \exception if there is no root of rank i
/// \note The roots are ordered ascendingly, so PolynomialRootsCommon[0] < PolynomialRootsCommon[1] < ...
T operator[](int i) const;
private:
/// @{
/// Prohibit copying and assignment.
PolynomialRootsCommon(const PolynomialRootsCommon&);
PolynomialRootsCommon& operator=(const PolynomialRootsCommon&);
/// @}
protected:
/// Constructor. Since the constructor must define the roots, only allow construction from a derived class
PolynomialRootsCommon() {}
/// The number of roots available for the polynomial, or DEGENERATE if there are infinite roots
int m_numRoots;
/// An array of up to N roots for a degree N polynomial ordered ascendingly
std::array<T, N> m_roots;
};
/// PolynomialRoots<T, 1> specializes the PolynomialRoots class for degree 1 (linear polynomials)
/// \sa PolynomialRoots<T, N>
template <typename T>
class PolynomialRoots<T, 1> : public PolynomialRootsCommon<T, 1>
{
public:
/// Constructor
/// \param p the degree 1 polynomial for which the roots are to be calculated
/// \param epsilon tolerance parameter for determining the number of valid, unique roots
explicit PolynomialRoots(const Polynomial<T, 1>& p, const T& epsilon = 1.0e-09);
};
/// PolynomialRoots<T, 2> specializes the PolynomialRoots class for degree 2 (quadratic polynomials)
/// \sa PolynomialRoots<T, N>
template <typename T>
class PolynomialRoots<T, 2> : public PolynomialRootsCommon<T, 2>
{
public:
/// Constructor
/// \param p the degree 2 polynomial for which the roots are to be calculated
/// \param epsilon tolerance parameter for determining the number of valid, unique roots
explicit PolynomialRoots(const Polynomial<T, 2>& p, const T& epsilon = 1.0e-09);
};
/// Specialized solve routine for linear polynomials (2 coefficients)
/// \tparam N maximum number of roots that can be stored
/// \tparam T type of the coefficients and computations
/// \param a coefficient of the linear term
/// \param b coefficient of the constant term
/// \param epsilon tolerance parameter for determining the number of valid, unique roots
/// \param numRoots [out] number of roots calculated, or DEGENERATE if there are infinitely many
/// \param roots [out] array containing the calculated roots ordered ascendingly
/// \exception if there are more than N roots
template <typename T, int N>
void solve(const T& a, const T& b, const T& epsilon, int* numRoots, std::array<T, N>* roots);
/// Specialized solve routine for quadratic polynomials (3 coefficients)
/// \tparam N maximum number of roots that can be stored
/// \tparam T type of the coefficients and computations
/// \param a coefficient of the square term
/// \param b coefficient of the linear term
/// \param c coefficient of the constant term
/// \param epsilon tolerance parameter for determining the number of valid, unique roots
/// \param numRoots [out] number of roots calculated, or DEGENERATE if there are infinitely many
/// \param roots [out] array containing the calculated roots ordered ascendingly
/// \exception if there are more than N roots
template <typename T, int N>
void solve(const T& a, const T& b, const T& c, const T& epsilon, int* numRoots, std::array<T, N>* roots);
}; // Math
}; // SurgSim
#include "SurgSim/Math/PolynomialRoots-inl.h"
#endif // SURGSIM_MATH_POLYNOMIALROOTS_H
|