This file is indexed.

/usr/include/SurgSim/Math/PolynomialValues-inl.h is in libopensurgsim-dev 0.7.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_POLYNOMIALVALUES_INL_H
#define SURGSIM_MATH_POLYNOMIALVALUES_INL_H

namespace SurgSim
{
namespace Math
{

template <class T>
PolynomialValues<T, 0>::PolynomialValues(const Polynomial<T, 0>& p) : m_polynomial(p)
{
}

template <class T>
const Polynomial<T, 0>& PolynomialValues<T, 0>::getPolynomial() const
{
	return m_polynomial;
}

template <class T>
Interval<T> PolynomialValues<T, 0>::valuesOverInterval(const Interval<T>&) const
{
	return Interval<T>(m_polynomial.evaluate(0), m_polynomial.evaluate(0));
}

template <class T>
PolynomialValues<T, 1>::PolynomialValues(const Polynomial<T, 1>& p) : m_polynomial(p) {}

template <class T>
const Polynomial<T, 1>& PolynomialValues<T, 1>::getPolynomial() const
{
	return m_polynomial;
}

template <class T>
Interval<T> PolynomialValues<T, 1>::valuesOverInterval(const Interval<T>& interval) const
{
	return Interval<T>::minToMax(m_polynomial.evaluate(interval.getMin()),
								 m_polynomial.evaluate(interval.getMax()));
}

template <class T>
PolynomialValues<T, 2>::PolynomialValues(const Polynomial<T, 2>& p) : m_polynomial(p),
	m_derivative(m_polynomial.derivative()),
	m_locationOfExtremum(m_derivative)
{
}

template <class T>
const Polynomial<T, 2>& PolynomialValues<T, 2>::getPolynomial() const
{
	return m_polynomial;
}

template <class T>
const Polynomial<T, 1>& PolynomialValues<T, 2>::getDerivative() const
{
	return m_derivative;
}

template <class T>
const PolynomialRoots<T, 1>& PolynomialValues<T, 2>::getLocationsOfExtrema() const
{
	return m_locationOfExtremum;
}

template <class T>
Interval<T> PolynomialValues<T, 2>::valuesOverInterval(const Interval<T>& interval) const
{
	// Always consider the endpoints.
	Interval<T> result = Interval<T>::minToMax(m_polynomial.evaluate(interval.getMin()),
						 m_polynomial.evaluate(interval.getMax()));

	if (m_locationOfExtremum.getNumRoots() > 0)
	{
		// There is an extremum (min or max)...
		if (interval.contains(m_locationOfExtremum[0]))
		{
			//...and it occurs somewhere in the middle of the interval.
			// The value at the extremum needs to be made a part of the result interval.
			result.extendToInclude(m_polynomial.evaluate(m_locationOfExtremum[0]));
		}
	}
	return result;
}

template <class T>
PolynomialValues<T, 3>::PolynomialValues(const Polynomial<T, 3>& p) : m_polynomial(p),
	m_derivative(m_polynomial.derivative()),
	m_locationOfExtremum(m_derivative)
{
}

template <class T>
const Polynomial<T, 3>& PolynomialValues<T, 3>::getPolynomial() const
{
	return m_polynomial;
}

template <class T>
const Polynomial<T, 2>& PolynomialValues<T, 3>::getDerivative() const
{
	return m_derivative;
}

template <class T>
const PolynomialRoots<T, 2>& PolynomialValues<T, 3>::getLocationsOfExtrema() const
{
	return m_locationOfExtremum;
}

template <class T>
Interval<T> PolynomialValues<T, 3>::valuesOverInterval(const Interval<T>& interval) const
{
	// Always consider the endpoints.
	Interval<T> result = Interval<T>::minToMax(m_polynomial.evaluate(interval.getMin()),
						 m_polynomial.evaluate(interval.getMax()));

	for (int i = 0;  i < m_locationOfExtremum.getNumRoots();  ++i)
	{
		// There is an extremum (min or max)...
		if (interval.contains(m_locationOfExtremum[i]))
		{
			//...and it occurs somewhere in the middle of the interval.
			// The value at the extremum needs to be made a part of the result interval.
			result.extendToInclude(m_polynomial.evaluate(m_locationOfExtremum[i]));
		}
	}
	return result;
}

template <class T, int N>
Interval<T> valuesOverInterval(const Polynomial<T, N>& p, const Interval<T>& interval)
{
	return PolynomialValues<T, N>(p).valuesOverInterval(interval);
}

}; // Math
}; // SurgSim

#endif // SURGSIM_MATH_POLYNOMIALVALUES_INL_H