/usr/include/SurgSim/Math/PolynomialValues-inl.h is in libopensurgsim-dev 0.7.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_MATH_POLYNOMIALVALUES_INL_H
#define SURGSIM_MATH_POLYNOMIALVALUES_INL_H
namespace SurgSim
{
namespace Math
{
template <class T>
PolynomialValues<T, 0>::PolynomialValues(const Polynomial<T, 0>& p) : m_polynomial(p)
{
}
template <class T>
const Polynomial<T, 0>& PolynomialValues<T, 0>::getPolynomial() const
{
return m_polynomial;
}
template <class T>
Interval<T> PolynomialValues<T, 0>::valuesOverInterval(const Interval<T>&) const
{
return Interval<T>(m_polynomial.evaluate(0), m_polynomial.evaluate(0));
}
template <class T>
PolynomialValues<T, 1>::PolynomialValues(const Polynomial<T, 1>& p) : m_polynomial(p) {}
template <class T>
const Polynomial<T, 1>& PolynomialValues<T, 1>::getPolynomial() const
{
return m_polynomial;
}
template <class T>
Interval<T> PolynomialValues<T, 1>::valuesOverInterval(const Interval<T>& interval) const
{
return Interval<T>::minToMax(m_polynomial.evaluate(interval.getMin()),
m_polynomial.evaluate(interval.getMax()));
}
template <class T>
PolynomialValues<T, 2>::PolynomialValues(const Polynomial<T, 2>& p) : m_polynomial(p),
m_derivative(m_polynomial.derivative()),
m_locationOfExtremum(m_derivative)
{
}
template <class T>
const Polynomial<T, 2>& PolynomialValues<T, 2>::getPolynomial() const
{
return m_polynomial;
}
template <class T>
const Polynomial<T, 1>& PolynomialValues<T, 2>::getDerivative() const
{
return m_derivative;
}
template <class T>
const PolynomialRoots<T, 1>& PolynomialValues<T, 2>::getLocationsOfExtrema() const
{
return m_locationOfExtremum;
}
template <class T>
Interval<T> PolynomialValues<T, 2>::valuesOverInterval(const Interval<T>& interval) const
{
// Always consider the endpoints.
Interval<T> result = Interval<T>::minToMax(m_polynomial.evaluate(interval.getMin()),
m_polynomial.evaluate(interval.getMax()));
if (m_locationOfExtremum.getNumRoots() > 0)
{
// There is an extremum (min or max)...
if (interval.contains(m_locationOfExtremum[0]))
{
//...and it occurs somewhere in the middle of the interval.
// The value at the extremum needs to be made a part of the result interval.
result.extendToInclude(m_polynomial.evaluate(m_locationOfExtremum[0]));
}
}
return result;
}
template <class T>
PolynomialValues<T, 3>::PolynomialValues(const Polynomial<T, 3>& p) : m_polynomial(p),
m_derivative(m_polynomial.derivative()),
m_locationOfExtremum(m_derivative)
{
}
template <class T>
const Polynomial<T, 3>& PolynomialValues<T, 3>::getPolynomial() const
{
return m_polynomial;
}
template <class T>
const Polynomial<T, 2>& PolynomialValues<T, 3>::getDerivative() const
{
return m_derivative;
}
template <class T>
const PolynomialRoots<T, 2>& PolynomialValues<T, 3>::getLocationsOfExtrema() const
{
return m_locationOfExtremum;
}
template <class T>
Interval<T> PolynomialValues<T, 3>::valuesOverInterval(const Interval<T>& interval) const
{
// Always consider the endpoints.
Interval<T> result = Interval<T>::minToMax(m_polynomial.evaluate(interval.getMin()),
m_polynomial.evaluate(interval.getMax()));
for (int i = 0; i < m_locationOfExtremum.getNumRoots(); ++i)
{
// There is an extremum (min or max)...
if (interval.contains(m_locationOfExtremum[i]))
{
//...and it occurs somewhere in the middle of the interval.
// The value at the extremum needs to be made a part of the result interval.
result.extendToInclude(m_polynomial.evaluate(m_locationOfExtremum[i]));
}
}
return result;
}
template <class T, int N>
Interval<T> valuesOverInterval(const Polynomial<T, N>& p, const Interval<T>& interval)
{
return PolynomialValues<T, N>(p).valuesOverInterval(interval);
}
}; // Math
}; // SurgSim
#endif // SURGSIM_MATH_POLYNOMIALVALUES_INL_H
|