/usr/include/SurgSim/Math/Valid.h is in libopensurgsim-dev 0.7.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// \file
/// Declarations of isValid(), isSubnormal() and setSubnormalToZero().
#ifndef SURGSIM_MATH_VALID_H
#define SURGSIM_MATH_VALID_H
#include <math.h>
#include <Eigen/Core>
#include <Eigen/Geometry>
namespace SurgSim
{
namespace Math
{
/// Check if a <code>float</code> value is valid.
/// Zero, subnormal and normal numbers are valid; infinities and NaNs are not.
/// \param value the value to check.
/// \returns true if valid, false if not.
inline bool isValid(float value);
/// Check if a <code>double</code> value is valid.
/// Zero, subnormal and normal numbers are valid; infinities and NaNs are not.
/// \param value the value to check.
/// \returns true if valid, false if not.
inline bool isValid(double value);
/// Check if a matrix or a vector is valid.
/// These quantities are valid if all of their elements are valid.
/// Zero, subnormal and normal numbers are valid; infinities and NaNs are not.
/// \tparam T the base type used to describe the matrix or vector. Can usually be deduced.
/// \param value the matrix or vector value to check.
/// \returns true if valid, false if not.
template <typename T>
inline bool isValid(const Eigen::DenseBase<T>& value);
/// Check if a quaternion is valid.
/// Quaternions are valid if all of their components are valid.
/// Zero, subnormal and normal numbers are valid; infinities and NaNs are not.
/// \tparam T the base type used to describe the quaternion. Can usually be deduced.
/// \param value the quaternion value to check.
/// \returns true if valid, false if not.
template <typename T>
inline bool isValid(const Eigen::QuaternionBase<T>& value);
/// Check if an angle/axis 3D rotation is valid.
/// Angle/axis rotations are valid if the angle and the axis components are valid.
/// Zero, subnormal and normal numbers are valid; infinities and NaNs are not.
/// \tparam T the scalar type used to describe the rotation. Can usually be deduced.
/// \param value the rotation value to check.
/// \returns true if valid, false if not.
template <typename T>
inline bool isValid(const Eigen::AngleAxis<T>& value);
/// Check if a 2D rotation is valid.
/// 2D rotations are valid if the rotation angle is valid.
/// Zero, subnormal and normal numbers are valid; infinities and NaNs are not.
/// \tparam T the scalar type used to describe the rotation. Can usually be deduced.
/// \param value the rotation value to check.
/// \returns true if valid, false if not.
template <typename T>
inline bool isValid(const Eigen::Rotation2D<T>& value);
/// Check if a transform is valid.
/// Transforms are valid if all of their components are valid.
/// Zero, subnormal and normal numbers are valid; infinities and NaNs are not.
/// \tparam T the scalar type used to describe the transform. Can usually be deduced.
/// \tparam D the dimension used to describe the transform. Can usually be deduced.
/// \tparam M the mode value used to describe the transform. Can usually be deduced.
/// \tparam O the options value used to describe the transform. Can usually be deduced.
/// \param value the transform value to check.
/// \returns true if valid, false if not.
template <typename T, int D, int M, int O>
inline bool isValid(const Eigen::Transform<T, D, M, O>& value);
/// Check if a <code>float</code> value is subnormal.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<float>::%denorm_min() <=
/// x < std::numeric_limits<float>::%min()</code>, and can result in very slow floating point calculations
/// under some conditions.
/// \param value the value to check.
/// \returns true if subnormal; false if not (normal, zero, infinite or NaN).
inline bool isSubnormal(float value);
/// Check if a <code>double</code> value is subnormal.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<double>::%denorm_min() <=
/// x < std::numeric_limits<double>::%min()</code>, and can result in very slow floating point
/// calculations under some conditions.
/// \param value the value to check.
/// \returns true if subnormal; false if not (normal, zero, infinite or NaN).
inline bool isSubnormal(double value);
/// Check if a matrix or a vector contains any subnormal floating-point values.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the base type used to describe the matrix or vector. Can usually be deduced.
/// \param value the matrix or vector value to check.
/// \returns true if any value is subnormal; false if none are (i.e. each is normal, zero, infinite or NaN).
template <typename T>
inline bool isSubnormal(const Eigen::DenseBase<T>& value);
/// Check if a quaternion contains any subnormal floating-point values.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the base type used to describe the quaternion. Can usually be deduced.
/// \param value the quaternion value to check.
/// \returns true if any value is subnormal; false if none are (i.e. each is normal, zero, infinite or NaN).
template <typename T>
inline bool isSubnormal(const Eigen::QuaternionBase<T>& value);
/// Check if an angle/axis 3D rotation contains any subnormal floating-point values.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the scalar type used to describe the rotation. Can usually be deduced.
/// \param value the rotation value to check.
/// \returns true if any value is subnormal; false if none are (i.e. each is normal, zero, infinite or NaN).
template <typename T>
inline bool isSubnormal(const Eigen::AngleAxis<T>& value);
/// Check if a 2D rotation is described by an angle that is subnormal.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the scalar type used to describe the rotation. Can usually be deduced.
/// \param value the 2D rotation value to check.
/// \returns true if the angle is subnormal; false if not (normal, zero, infinite or NaN).
template <typename T>
inline bool isSubnormal(const Eigen::Rotation2D<T>& value);
/// Check if a transform contains any subnormal floating-point values.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the scalar type used to describe the transform. Can usually be deduced.
/// \tparam D the dimension used to describe the transform. Can usually be deduced.
/// \tparam M the mode value used to describe the transform. Can usually be deduced.
/// \tparam O the options value used to describe the transform. Can usually be deduced.
/// \param value the transform value to check.
/// \returns true if any value is subnormal; false if none are (i.e. each is normal, zero, infinite or NaN).
template <typename T, int D, int M, int O>
inline bool isSubnormal(const Eigen::Transform<T, D, M, O>& value);
/// If the <code>float</code> value is subnormal, set it to zero.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<float>::%denorm_min() <=
/// x < std::numeric_limits<float>::%min()</code>, and can result in very slow floating point calculations
/// under some conditions.
/// \param [in,out] value the value to check and possibly modify.
/// \returns true if the value was modified.
inline bool setSubnormalToZero(float* value);
/// If the <code>double</code> value is subnormal, set it to zero.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<double>::%denorm_min() <=
/// x < std::numeric_limits<double>::%min()</code>, and can result in very slow floating point calculations
/// under some conditions.
/// \param [in,out] value the value to check and possibly modify.
/// \returns true if the value was modified.
inline bool setSubnormalToZero(double* value);
/// Set all subnormal values in a matrix or a vector to zero.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the base type used to describe the matrix or vector. Can usually be deduced.
/// \param [in,out] value the matrix or vector value to check and possibly modify.
/// \returns true if any value was modified.
template <typename T>
inline bool setSubnormalToZero(Eigen::DenseBase<T>* value);
/// Set all subnormal values in a quaternion to zero.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the base type used to describe the quaternion. Can usually be deduced.
/// \param [in,out] value the quaternion value to check and possibly modify.
/// \returns true if any value was modified.
template <typename T>
inline bool setSubnormalToZero(Eigen::QuaternionBase<T>* value);
/// Set all subnormal values in an angle/axis 3D rotation to zero.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the scalar type used to describe the rotation. Can usually be deduced.
/// \param [in,out] value the rotation value to check and possibly modify.
/// \returns true if any value was modified.
template <typename T>
inline bool setSubnormalToZero(Eigen::AngleAxis<T>* value);
/// If the angle of a 2D rotation is subnormal, set it to zero.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the scalar type used to describe the rotation. Can usually be deduced.
/// \param [in,out] value the rotation value to check and possibly modify.
/// \returns true if the value was modified.
template <typename T>
inline bool setSubnormalToZero(Eigen::Rotation2D<T>* value);
/// Set all subnormal values in a transform to zero.
/// Subnormal values have absolute values in the range <code>std::numeric_limits<T>::%denorm_min() <= x
/// < std::numeric_limits<T>::%min()</code>, and can result in very slow floating point calculations under
/// some conditions.
/// \tparam T the base type used to describe the transform. Can usually be deduced.
/// \param [in,out] value the transform value to check and possibly modify.
/// \returns true if any value was modified.
template <typename T, int D, int M, int O>
inline bool setSubnormalToZero(Eigen::Transform<T, D, M, O>* value);
}; // namespace Math
}; // namespace SurgSim
#include "SurgSim/Math/Valid-inl.h"
#endif // SURGSIM_MATH_VALID_H
|