This file is indexed.

/usr/include/openturns/GaussKronrod.hxx is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
//                                               -*- C++ -*-
/**
 *  @brief This class allows to compute integrals of a function over an interval
 *         using GaussKronrod method for 1D scalar function
 *
 *  Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_GAUSSKRONROD_HXX
#define OPENTURNS_GAUSSKRONROD_HXX

#include "IntegrationAlgorithmImplementation.hxx"
#include "GaussKronrodRule.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class GaussKronrod
 */

class OT_API GaussKronrod
  : public IntegrationAlgorithmImplementation
{

  CLASSNAME;

public:

  /** Default constructor without parameters */
  GaussKronrod();

  /** Parameter constructor */
  GaussKronrod(const UnsignedInteger maximumSubIntervals,
               const NumericalScalar maximumError,
               const GaussKronrodRule & rule);

  /** Virtual copy constructor */
  virtual GaussKronrod * clone() const;

  /** Compute an approximation of \int_{[a,b]}f(x)dx, where [a,b]
   * is an 1D interval
   */
  using IntegrationAlgorithmImplementation::integrate;
#ifndef SWIG
  virtual NumericalPoint integrate(const NumericalMathFunction & function,
                                   const Interval & interval,
                                   NumericalScalar & error) const;

  // This method allows to get the estimated integration error as a scalar
  virtual NumericalPoint integrate(const NumericalMathFunction & function,
                                   const NumericalScalar a,
                                   const NumericalScalar b,
                                   NumericalScalar & error,
                                   NumericalPoint & ai,
                                   NumericalPoint & bi,
                                   NumericalSample & fi,
                                   NumericalPoint & ei) const;

#endif
  // This method allows to get the estimated integration error as a NumericalPoint,
  // needed by Python
  virtual NumericalPoint integrate(const NumericalMathFunction & function,
                                   const NumericalScalar a,
                                   const NumericalScalar b,
                                   NumericalPoint & error,
                                   NumericalPoint & ai,
                                   NumericalPoint & bi,
                                   NumericalSample & fi,
                                   NumericalPoint & ei) const;

  /** Maximum sub-intervals accessor */
  UnsignedInteger getMaximumSubIntervals() const;
  void setMaximumSubIntervals(const UnsignedInteger maximumSubIntervals);

  /** Maximum error accessor */
  NumericalScalar getMaximumError() const;
  void setMaximumError(const NumericalScalar maximumError);

  /** Rule accessor */
  GaussKronrodRule getRule() const;
  void setRule(const GaussKronrodRule & rule);

  /** String converter */
  virtual String __repr__() const;

  /** String converter */
  virtual String __str__(const String & offset = "") const;

private:

  /** Compute the local GaussKronrod rule over [a, b] */
  NumericalPoint computeRule(const NumericalMathFunction & function,
                             const NumericalScalar a,
                             const NumericalScalar b,
                             NumericalScalar & localError) const;

  /* Maximum number of sub-intervals */
  UnsignedInteger maximumSubIntervals_;

  /* Maximum estimated error */
  NumericalScalar maximumError_;

  /* Local integration rule */
  GaussKronrodRule rule_;

} ; /* class GaussKronrod */

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_GAUSSKRONROD_HXX */