This file is indexed.

/usr/include/openturns/GeneralizedLinearModelAlgorithm.hxx is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//                                               -*- C++ -*-
/**
 *  @brief The class builds generalized linear models
 *
 *  Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_GENERALIZEDLINEARMODELALGORITHM_HXX
#define OPENTURNS_GENERALIZEDLINEARMODELALGORITHM_HXX

#include "MetaModelAlgorithm.hxx"
#include "Basis.hxx"
#include "CovarianceModel.hxx"
#include "KrigingResult.hxx"
#include "HMatrix.hxx"
#include "OptimizationSolver.hxx"
#include "GeneralizedLinearModelResult.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class GeneralizedLinearModelAlgorithm
 *
 * The class building generalized linear model
 */

class OT_API GeneralizedLinearModelAlgorithm
  : public MetaModelAlgorithm
{
  CLASSNAME;

public:

  typedef GeneralizedLinearModelResult::BasisCollection BasisCollection;
  typedef GeneralizedLinearModelResult::BasisPersistentCollection BasisPersistentCollection;

  /** Default constructor */
  GeneralizedLinearModelAlgorithm();

  /** Parameters constructor */
  GeneralizedLinearModelAlgorithm (const NumericalSample & inputSample,
                                   const NumericalSample & outputSample,
                                   const CovarianceModel & covarianceModel,
                                   const Bool normalize = ResourceMap::GetAsBool("GeneralizedLinearModelAlgorithm-NormalizeData"),
                                   const Bool keepCovariance = ResourceMap::GetAsBool("GeneralizedLinearModelAlgorithm-KeepCovariance"));

  GeneralizedLinearModelAlgorithm (const NumericalSample & inputSample,
                                   const NumericalSample & outputSample,
                                   const CovarianceModel & covarianceModel,
                                   const Basis & basis,
                                   const Bool normalize = ResourceMap::GetAsBool("GeneralizedLinearModelAlgorithm-NormalizeData"),
                                   const Bool keepCovariance = ResourceMap::GetAsBool("GeneralizedLinearModelAlgorithm-KeepCovariance"));

  /** Parameters constructor */
  GeneralizedLinearModelAlgorithm (const NumericalSample & inputSample,
                                   const NumericalMathFunction & inputTransformation,
                                   const NumericalSample & outputSample,
                                   const CovarianceModel & covarianceModel,
                                   const Basis & basis,
                                   const Bool keepCovariance = ResourceMap::GetAsBool("GeneralizedLinearModelAlgorithm-KeepCovariance"));

  /** Parameters constructor */
  GeneralizedLinearModelAlgorithm (const NumericalSample & inputSample,
                                   const NumericalSample & outputSample,
                                   const CovarianceModel & covarianceModel,
                                   const BasisCollection & multivariateBasis,
                                   const Bool normalize = ResourceMap::GetAsBool("GeneralizedLinearModelAlgorithm-NormalizeData"),
                                   const Bool keepCovariance = ResourceMap::GetAsBool("GeneralizedLinearModelAlgorithm-KeepCovariance"));

  /** Parameters constructor */
  GeneralizedLinearModelAlgorithm (const NumericalSample & inputSample,
                                   const NumericalMathFunction & inputTransformation,
                                   const NumericalSample & outputSample,
                                   const CovarianceModel & covarianceModel,
                                   const BasisCollection & multivariateBasis,
                                   const Bool keepCovariance = ResourceMap::GetAsBool("GeneralizedLinearModelAlgorithm-KeepCovariance"));

  /** Virtual constructor */
  GeneralizedLinearModelAlgorithm * clone() const;

  /** String converter */
  String __repr__() const;

  /** Perform regression */
  void run();

  /** input transformation accessor */
  void setInputTransformation(const NumericalMathFunction & inputTransformation);
  NumericalMathFunction getInputTransformation() const;

  /** Sample accessors */
  NumericalSample getInputSample() const;
  NumericalSample getOutputSample() const;

  /** result accessor */
  GeneralizedLinearModelResult getResult();

  /** Objective function (log-Likelihood) accessor */
  NumericalMathFunction getObjectiveFunction();

  /** Optimization solver accessor */
  OptimizationSolver getOptimizationSolver() const;
  void setOptimizationSolver(const OptimizationSolver & solver);

  /** Method save() stores the object through the StorageManager */
  virtual void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  virtual void load(Advocate & adv);


protected:
  // Optimize the log-likelihood
  NumericalPoint optimizeLogLikelihood();
  // Compute the output log-likelihood function
  NumericalScalar computeLogLikelihood(const NumericalPoint & theta) const;
  NumericalScalar computeLapackLogLikelihood(const NumericalPoint & theta) const;
  NumericalScalar computeHMatLogLikelihood(const NumericalPoint & theta) const;
  // Compute the design matrix on the normalized input sample
  void computeF();
  // Normalize the input sample
  void normalizeInputSample();

  /** Method accessor (lapack/hmat) */
  void initializeMethod();
  void setMethod(const UnsignedInteger method);

  // Initialize default optimization solver
  void initializeDefaultOptimizationSolver();
  friend class Factory<GeneralizedLinearModelAlgorithm>;


  friend class KrigingAlgorithm;
  NumericalPoint getRho() const;

private:

  /** set sample  method */
  void setData(const NumericalSample & inputSample,
               const NumericalSample & outputSample);

  /** set covariance method */
  void setCovariance(const CovarianceModel & covarianceModel);

  /** Set basis collection method */
  void setBasis(const BasisCollection & basisCollection);

  /** check that sample is centered to precison eps */
  void checkYCentered(const NumericalSample & Y);

  // The input data
  NumericalSample inputSample_;
  // Standardized version of the input data
  NumericalSample normalizedInputSample_;
  // Standardization funtion
  NumericalMathFunction inputTransformation_;
  mutable Bool normalize_;
  // The associated output data
  NumericalSample outputSample_;
  // The covariance model parametric familly
  CovarianceModel covarianceModel_;
  // The member of the covariance model fitted to the data
  CovarianceModel conditionalCovarianceModel_;

  // The optimization algorithm used for the meta-parameters estimation
  mutable OptimizationSolver  solver_;

  // The coefficients of the current output conditional expectation part
  mutable NumericalPoint beta_;
  // Temporarly used to compute gamma
  mutable NumericalPoint rho_;
  // The current output Gram matrix
  mutable Matrix F_;

  /** Result */
  GeneralizedLinearModelResult result_;

  /** BasisCollection */
  BasisPersistentCollection basis_;

  /** Cholesky factor ==>  TriangularMatrix */
  mutable TriangularMatrix covarianceCholeskyFactor_;

  /** Cholesky factor when using hmat-oss */
  mutable HMatrix covarianceHMatrix_;

  /** Boolean argument for keep covariance */
  mutable Bool keepCovariance_;

  /** Method : 0 (lapack), 1 (hmat) */
  UnsignedInteger method_;

  /** Bool to tell if optimization has run */
  Bool hasRun_;
}; // class GeneralizedLinearModelAlgorithm


END_NAMESPACE_OPENTURNS

#endif