/usr/include/openturns/IteratedQuadrature.hxx is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | // -*- C++ -*-
/**
* @brief This class allows to compute integrals of a function over a
* domain defined by functions
*
* Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_ITERATEDQUADRATURE_HXX
#define OPENTURNS_ITERATEDQUADRATURE_HXX
#include "IntegrationAlgorithmImplementation.hxx"
#include "IntegrationAlgorithm.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class IteratedQuadrature
*/
class OT_API IteratedQuadrature
: public IntegrationAlgorithmImplementation
{
CLASSNAME;
public:
typedef Collection< NumericalMathFunction > NumericalMathFunctionCollection;
/** Default constructor without parameters */
IteratedQuadrature();
/** Parameter constructor */
IteratedQuadrature(const IntegrationAlgorithm & algorithm);
/** Virtual copy constructor */
virtual IteratedQuadrature * clone() const;
/** Compute an approximation of \int_a^b\int_{L_1(x_1)}^{U_1(x_1)}\int_{L_1(x_1,x_2)}^{U_2(x_1,x_2)}\dots\int_{L_1(x_1,\dots,x_{n-1})}^{U_2(x_1,\dots,x_{n-1})} f(x_1,\dots,x_n)dx_1\dotsdx_n, where [a,b] is an 1D interval, L_k and U_k are functions from R^k into R.
*/
using IntegrationAlgorithmImplementation::integrate;
NumericalPoint integrate(const NumericalMathFunction & function,
const Interval & interval) const;
// This method allows to get the estimated integration error as a scalar
NumericalPoint integrate(const NumericalMathFunction & function,
const NumericalScalar a,
const NumericalScalar b,
const NumericalMathFunctionCollection & lowerBounds,
const NumericalMathFunctionCollection & upperBounds,
const Bool check = true) const;
/** String converter */
virtual String __repr__() const;
/** String converter */
virtual String __str__(const String & offset = "") const;
private:
/* Underlying integration algorithm */
IntegrationAlgorithm algorithm_;
} ; /* class IteratedQuadrature */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_ITERATEDQUADRATURE_HXX */
|