/usr/include/openturns/KrigingResult.hxx is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | // -*- C++ -*-
/**
* @brief The result of a kriging estimation
*
* Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_KRIGINGRESULT_HXX
#define OPENTURNS_KRIGINGRESULT_HXX
#include "MetaModelResult.hxx"
#include "CovarianceModel.hxx"
#include "NumericalSample.hxx"
#include "Collection.hxx"
#include "PersistentCollection.hxx"
#include "NumericalMathFunction.hxx"
#include "Normal.hxx"
#include "HMatrix.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class KrigingResult
*
* The result of a chaos expansion
*/
class OT_API KrigingResult
: public MetaModelResult
{
CLASSNAME;
public:
// friend class Factory<KrigingResult>;
typedef Collection<NumericalPoint> NumericalPointCollection;
typedef PersistentCollection<NumericalPoint> NumericalPointPersistentCollection;
typedef Collection<Basis> BasisCollection;
typedef PersistentCollection<Basis> BasisPersistentCollection;
/** Default constructor */
KrigingResult();
/** Parameter constructor without any cholesky factor*/
KrigingResult(const NumericalSample & inputData,
const NumericalSample & outputData,
const NumericalMathFunction & metaModel,
const NumericalPoint & residuals,
const NumericalPoint & relativeErrors,
const BasisCollection & basis,
const NumericalPointCollection & trendCoefficients,
const CovarianceModel & covarianceModel,
const NumericalSample & covarianceCoefficients);
/** Parameter constructor with Cholesky factor (Lapack)*/
KrigingResult(const NumericalSample & inputData,
const NumericalSample & outputData,
const NumericalMathFunction & metaModel,
const NumericalPoint & residuals,
const NumericalPoint & relativeErrors,
const BasisCollection & basis,
const NumericalPointCollection & trendCoefficients,
const CovarianceModel & covarianceModel,
const NumericalSample & covarianceCoefficients,
const TriangularMatrix & covarianceCholeskyFactor,
const HMatrix & covarianceHMatrix);
/** Virtual constructor */
virtual KrigingResult * clone() const;
/** String converter */
virtual String __repr__() const;
virtual String __str__(const String & offset = "") const;
/** Trend basis accessor */
virtual BasisCollection getBasisCollection() const;
/** Trend coefficients accessor */
virtual NumericalPointCollection getTrendCoefficients() const;
/** Conditional covariance models accessor */
virtual CovarianceModel getCovarianceModel() const;
/** Process coefficients accessor */
virtual NumericalSample getCovarianceCoefficients() const;
/** Transformation accessor */
virtual NumericalMathFunction getTransformation() const;
virtual void setTransformation(const NumericalMathFunction & transformation);
/** Compute mean of new points conditionnaly to observations */
virtual NumericalPoint getConditionalMean(const NumericalSample & xi) const;
/** Compute mean of new points conditionnaly to observations */
virtual NumericalPoint getConditionalMean(const NumericalPoint & xi) const;
/** Compute covariance matrix conditionnaly to observations*/
virtual CovarianceMatrix getConditionalCovariance(const NumericalSample & xi) const ;
/** Compute covariance matrix conditionnaly to observations*/
virtual CovarianceMatrix getConditionalCovariance(const NumericalPoint & xi) const;
/** Compute joint normal distribution conditionnaly to observations*/
virtual Normal operator()(const NumericalSample & xi) const;
/** Compute joint normal distribution conditionnaly to observations*/
virtual Normal operator()(const NumericalPoint & xi) const;
/** Method save() stores the object through the StorageManager */
virtual void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
virtual void load(Advocate & adv);
protected:
/** Compute cross matrix method ==> not necessary square matrix */
Matrix getCrossMatrix(const NumericalSample & x) const;
void computeF() const;
private:
// Structure for evaluation of crossCovariance
friend struct KrigingResultCrossCovarianceFunctor;
/** inputData should be keeped*/
NumericalSample inputData_;
/** input transformed data: store data*/
NumericalSample inputTransformedData_;
/** inputTransformation ==> iso-probabilistic transformation */
NumericalMathFunction inputTransformation_;
/** Boolean transformation */
Bool hasTransformation_;
/** The trend basis */
BasisPersistentCollection basis_;
/** The trend coefficients */
NumericalPointPersistentCollection trendCoefficients_;
/** The covariance model */
CovarianceModel covarianceModel_;
/** The covariance coefficients */
NumericalSample covarianceCoefficients_;
/** Boolean for cholesky. The factor is not mandatory (see KrigingAlgorithm) */
Bool hasCholeskyFactor_;
/** Cholesky factor */
mutable TriangularMatrix covarianceCholeskyFactor_;
/** Cholesky factor when using hmat-oss */
mutable HMatrix covarianceHMatrix_;
/** Matrix F : the regression matrix */
mutable Matrix F_;
/** Matrix phi = L^{-1}F ==> phiT is the transposed matrix */
mutable Matrix phiT_;
/** Matrix F^{t}R^{-1}F writes phi_ = L^{-1}F ==> QR decomposition */
// G_ is the triangular matrix ==> Gt the transposed
mutable Matrix Gt_;
} ; /* class KrigingResult */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_KRIGINGRESULT_HXX */
|