This file is indexed.

/usr/include/openturns/MatrixImplementation.hxx is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//                                               -*- C++ -*-
/**
 *  @brief MatrixImplementation implements the classical mathematical Matrix
 *
 *  Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_MATRIXIMPLEMENTATION_HXX
#define OPENTURNS_MATRIXIMPLEMENTATION_HXX

#include "PersistentCollection.hxx"
#include "Description.hxx"
#include "NumericalPoint.hxx"
#include "Collection.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class MatrixImplementation
 *
 * MatrixImplementation implements the classical mathematical MatrixImplementation
 */

// Forward declaration of ComplexMatrixImplementation
class ComplexMatrixImplementation;

class OT_API MatrixImplementation
  : public PersistentCollection<NumericalScalar>

{
  CLASSNAME;

#ifndef SWIG
  /** Declaration of friend operators */
  friend MatrixImplementation operator * (const NumericalScalar s,
                                          const MatrixImplementation & matrix)
  {
    return matrix.operator * (s);
  }
#endif


public:

  typedef Collection<NumericalScalar>       NumericalScalarCollection;
  typedef Collection<NumericalComplex>      NumericalComplexCollection;

  /** Default constructor */
  MatrixImplementation();

  /** Constructor with size (rowDim and colDim) */
  MatrixImplementation(const UnsignedInteger rowDim,
                       const UnsignedInteger colDim);

  /** Constructor from range of external collection */
  template <class InputIterator>
  MatrixImplementation(const UnsignedInteger rowDim,
                       const UnsignedInteger colDim,
                       const InputIterator first,
                       const InputIterator last);

  /** Constructor from external collection */
  /** If the dimensions of the matrix and of the collection */
  /** do not correspond, either the collection is truncated */
  /** or the rest of the matrix is filled with zeros */
  MatrixImplementation(const UnsignedInteger rowDim,
                       const UnsignedInteger colDim,
                       const NumericalScalarCollection & elementsValues);

  /** Virtual constructor */
  virtual MatrixImplementation * clone() const;

  /** String converter */
  virtual String __repr__() const;
  virtual String __str__(const String & offset = "") const;

  /** Operator () gives access to the elements of the MatrixImplementation (to modify these elements) */
  /** The element of the MatrixImplementation is designated by its row number i and its column number j */
  NumericalScalar & operator () (const UnsignedInteger i,
                                 const UnsignedInteger j);

  /** Operator () gives access to the elements of the MatrixImplementation (read only) */
  /** The element of the MatrixImplementation is designated by its row number i and its column number j */
  const NumericalScalar & operator () (const UnsignedInteger i,
                                       const UnsignedInteger j) const;

  /** Get the dimensions of the MatrixImplementation */
  /** Number of rows */
  UnsignedInteger getNbRows() const;
  /** Number of columns */
  UnsignedInteger getNbColumns() const;
  /** Dimension (for square matrices only */
  UnsignedInteger getDimension() const;

  /** MatrixImplementation transpose */
  MatrixImplementation transpose () const;

  /** Row extraction */
  const MatrixImplementation getRow(const UnsignedInteger rowIndex) const;
  const MatrixImplementation getRowSym(const UnsignedInteger rowIndex) const;
  /** Column extration */
  const MatrixImplementation getColumn(const UnsignedInteger columnIndex) const;
  const MatrixImplementation getColumnSym(const UnsignedInteger columnIndex) const;

  /** MatrixImplementation addition (must have the same dimensions) */
  MatrixImplementation operator + (const MatrixImplementation & matrix) const;

  /** MatrixImplementation substraction (must have the same dimensions) */
  MatrixImplementation operator - (const MatrixImplementation & matrix) const;

  /** MatrixImplementation multiplications (must have consistent dimensions) */
  MatrixImplementation genProd (const MatrixImplementation & matrix,
                                const Bool transposeLeft = false,
                                const Bool transposeRight = false) const;
  MatrixImplementation symProd (const MatrixImplementation & m,
                                const char symSide) const;

  /** MatrixImplementation integer power */
  MatrixImplementation genPower(const UnsignedInteger n) const;
  MatrixImplementation symPower(const UnsignedInteger n) const;

  /** Multiplications with a NumericalPoint (must have consistent dimensions) */
  NumericalPoint genVectProd (const NumericalPoint & pt,
                              const Bool transpose = false) const;
  NumericalPoint symVectProd (const NumericalPoint & pt) const;

  /** Using triangular matrix */
  NumericalScalarCollection triangularVectProd (const NumericalScalarCollection & pt,
      const char side = 'L') const;
  NumericalScalarCollection triangularVectProd (const NumericalPoint & pt,
      const char side = 'L') const;

  /** Multiplication with a NumericalScalar */
  MatrixImplementation operator * (const NumericalScalar s) const;

  /** Division by a NumericalScalar*/
  MatrixImplementation operator / (const NumericalScalar s) const;

  /** Symmetrize MatrixImplementation in case it is a symmetric matrix (stored as a triangular matrix) */
  void symmetrize() const;

  /** Triangularize MatrixImplementation in case it is a triangular matrix (stored as a square matrix) */
  void triangularize(const Bool isLowerTriangular) const;

  /** Resolution of a linear system in case of a rectangular matrix */
  NumericalPoint solveLinearSystemRect(const NumericalPoint & b,
                                       const Bool keepIntact = true);
  MatrixImplementation solveLinearSystemRect(const MatrixImplementation & b,
      const Bool keepIntact = true);

  /** Resolution of a linear system in case of a square matrix */
  NumericalPoint solveLinearSystemSquare(const NumericalPoint & b,
                                         const Bool keepIntact = true);
  MatrixImplementation solveLinearSystemSquare(const MatrixImplementation & b,
      const Bool keepIntact = true);

  /** Resolution of a linear system in case of a triangular matrix */
  NumericalPoint solveLinearSystemTri(const NumericalPoint & b,
                                      const Bool keepIntact = true,
                                      const Bool lower = true,
                                      const Bool transpose = false);

  MatrixImplementation solveLinearSystemTri(const MatrixImplementation & b,
      const Bool keepIntact = true,
      const Bool lower = true,
      const Bool transpose = false);

  /** Resolution of a linear system in case of a symmetric matrix */
  NumericalPoint solveLinearSystemSym(const NumericalPoint & b,
                                      const Bool keepIntact = true);
  MatrixImplementation solveLinearSystemSym(const MatrixImplementation & b,
      const Bool keepIntact = true);

  /** Resolution of a linear system in case of a covariance matrix */
  NumericalPoint solveLinearSystemCov(const NumericalPoint & b,
                                      const Bool keepIntact = true);
  MatrixImplementation solveLinearSystemCov(const MatrixImplementation & b,
      const Bool keepIntact = true);

  /** Triangular matrix product : side argument L/R for the position of the triangular matrix, up/lo to tell if it  */
  MatrixImplementation triangularProd(const MatrixImplementation & m,
                                      const char side = 'L',
                                      const char uplo = 'L') const;

  /** Compute determinant */
  NumericalScalar computeLogAbsoluteDeterminant(NumericalScalar & sign,
      const Bool keepIntact = true);
  NumericalScalar computeDeterminant(const Bool keepIntact = true);
  NumericalScalar computeLogAbsoluteDeterminantSym(NumericalScalar & sign,
      const Bool keepIntact = true);
  NumericalScalar computeDeterminantSym(const Bool keepIntact = true);

  /** Compute trace */
  NumericalScalar computeTrace() const;

  /** Compute eigenvalues */
  NumericalComplexCollection computeEigenValuesSquare(const Bool keepIntact = true);
  NumericalComplexCollection computeEVSquare(ComplexMatrixImplementation & v,
      const Bool keepIntact = true);
  NumericalPoint computeEigenValuesSym(const Bool keepIntact = true);
  NumericalPoint computeEVSym(MatrixImplementation & v,
                              const Bool keepIntact = true);

  /** Compute singular values */
  NumericalPoint computeSingularValues(const Bool keepIntact = true);

  /** Build the singular value decomposition */
  NumericalPoint computeSVD(MatrixImplementation & u,
                            MatrixImplementation & vT,
                            const Bool fullSVD = false,
                            const Bool keepIntact = true);

  /** Check if the matrix is symmetric */
  virtual Bool isSymmetric() const;

  /** Check if the matrix is SPD */
  virtual Bool isPositiveDefinite(const Bool keepIntact = true);

  /** Check if the matrix values belong to (-1;1) */
  virtual Bool hasUnitRange() const;

  /** Set small elements to zero */
  virtual MatrixImplementation clean(const NumericalScalar threshold) const;

  virtual MatrixImplementation cleanSym(const NumericalScalar threshold) const;

  /** Build the Cholesky factorization of the matrix */
  virtual MatrixImplementation computeCholesky(const Bool keepIntact = true);

  /** Update in-place the Cholesky factor L of an SPD matrix M given a rank-one update vv^T, ie L becomes Lnew such that LnewLnew^t = Mnew with Mnew = M + vv^t */
  static void CholeskyUpdate(MatrixImplementation & cholesky,
                             const NumericalPoint & vector);

  /** Downdate in-place the Cholesky factor L of an SPD matrix M given a rank-one downdate vv^T, ie L becomes Lnew such that LnewLnew^t = Mnew with Mnew = M - vv^t */
  static void CholeskyDowndate(MatrixImplementation & cholesky,
                               const NumericalPoint & vector);

  /** Build the QR factorization of the matrix */
  virtual MatrixImplementation computeQR(MatrixImplementation & R,
                                         const Bool fullQR = false,
                                         const Bool keepIntact = true);

  /** Compute the Gram matrix associated to the matrix */
  virtual MatrixImplementation computeGram(const Bool transpose = true) const;

  /** Comparison operators */
  Bool operator == (const MatrixImplementation & rhs) const;
  inline Bool operator != (const MatrixImplementation & rhs) const
  {
    return !((*this) == rhs);
  }

  /** Empty returns true if there is no element in the MatrixImplementation */
  Bool isEmpty() const;

  /** Returns true if triangular lower or upper */
  Bool isTriangular(Bool lower = true) const;

  /** Method save() stores the object through the StorageManager */
  void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  void load(Advocate & adv);

  // These functions are only intended to be used by SWIG, DO NOT use them for your own purpose !
  // INTENTIONALY NOT DOCUMENTED
  const NumericalScalar * __baseaddress__ () const;
  UnsignedInteger __elementsize__ () const;
  UnsignedInteger __stride__ (UnsignedInteger dim) const;

protected:

  /** MatrixImplementation Dimensions */
  UnsignedInteger nbRows_;
  UnsignedInteger nbColumns_;

  /** Position conversion function : the indices i & j are used to compute the actual position of the element in the collection */
  inline UnsignedInteger convertPosition (const UnsignedInteger i,
                                          const UnsignedInteger j) const;



}; /* class MatrixImplementation */

inline UnsignedInteger MatrixImplementation::convertPosition (const UnsignedInteger i,
    const UnsignedInteger j) const
{
  return i + nbRows_ * j ;
}

/** Constructor from range of external collection */
template <class InputIterator>
MatrixImplementation::MatrixImplementation(const UnsignedInteger rowDim,
    const UnsignedInteger colDim,
    const InputIterator first,
    const InputIterator last)
  : PersistentCollection<NumericalScalar>(rowDim * colDim, 0.0),
    nbRows_(rowDim),
    nbColumns_(colDim)
{
  this->assign(first, last);
}

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_MATRIXIMPLEMENTATION_HXX */