This file is indexed.

/usr/include/openturns/NumericalMathFunction.hxx is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//                                               -*- C++ -*-
/**
 *  @brief The class that implements numerical math functions
 *
 *  Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_NUMERICALMATHFUNCTION_HXX
#define OPENTURNS_NUMERICALMATHFUNCTION_HXX

#include "TypedInterfaceObject.hxx"
#include "NumericalMathFunctionImplementation.hxx"
#include "ProductNumericalMathFunction.hxx"
#include "ComparisonOperator.hxx"
#include "Collection.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class NumericalMathFunction
 * @brief Simulates a numerical math function
 *
 * The class that simulates a numerical math function,
 * its gradient and its hessian. This class is just an interface
 * to actual implementation objects that can be hot-replaced
 * during computation. Each implementation object refers to
 * the function, the gradient or the hessian.
 * @see NumericalMathFunctionImplementation
 */
class OT_API NumericalMathFunction
  : public TypedInterfaceObject<NumericalMathFunctionImplementation>
{
  CLASSNAME;
public:

  /* Some typedefs for easy reading */
  typedef Collection<NumericalMathFunction>                                  NumericalMathFunctionCollection;
  typedef NumericalMathFunctionImplementation::EvaluationImplementation      EvaluationImplementation;
  typedef NumericalMathFunctionImplementation::GradientImplementation        GradientImplementation;
  typedef NumericalMathFunctionImplementation::HessianImplementation         HessianImplementation;

  /** Default constructor */
  NumericalMathFunction();

  /** Constructor from NumericalMathFunctionImplementation */
  NumericalMathFunction(const NumericalMathFunctionImplementation & implementation);

#ifndef SWIG
  /** Constructor from implementation */
  NumericalMathFunction(const Implementation & p_implementation);

  /** Constructor from implementation pointer */
  NumericalMathFunction(NumericalMathFunctionImplementation * p_implementation);
#endif

  /** Constructor from evaluation implementation */
  NumericalMathFunction(const NumericalMathEvaluationImplementation & evaluation);

  /** @brief Composition constructor
   *
   * Builds a new %NumericalMathFunction from two others as if they were mathematicaly composed,
   *
   * Example: h = f o g
   * - f is the left %NumericalMathFunction
   * - g is the right %NumericalMathFunction
   * - h is the composed %NumericalMathFunction
   * .
   * The condition for successful composition is that the dimension of the output of g is the dimension
   * of the input of f. The composed %NumericalMathFunction has the input dimension of g and the output dimension
   * of f.
   * @param left The left %NumericalMathFunction (aka f)
   * @param right The right %NumericalMathFunction (aka g)
   */
  NumericalMathFunction(const NumericalMathFunction & left,
                        const NumericalMathFunction & right);

  /** @brief Analytical formula constructor
   *
   * Builds a new %NumericalMathFunction by analytical expression parsing. The expression involving the input
   * variables (stored in \e inputVariablesNames) to produce the output variables (stored in \e outputVariablesNames)
   * are described in \e formulas.
   *
   * The input dimension of the new %NumericalMathFunction is the size of \e inputVariablesNames and
   * the output dimension of the new %NumericalMathFunction is the size of \e outputVariablesName.
   * @param inputVariablesNames The ordered collection of input variables names
   * @param outputVariablesNames The ordered collection of output variables names
   * @param formulas The ordered collection of analytical expressions to compute the output variables
   */
  NumericalMathFunction(const Description & inputVariablesNames,
                        const Description & outputVariablesNames,
                        const Description & formulas);

  /** Same as the previous one, but with default names for the output variables */
  NumericalMathFunction(const Description & inputVariablesNames,
                        const Description & formulas);

  /** Indicator function constructor */
  NumericalMathFunction(const NumericalMathFunction & function,
                        const ComparisonOperator & comparisonOperator,
                        const NumericalScalar threshold);

  /** Aggregated function constructor: the output is the aggregation of the several functions */
  NumericalMathFunction(const NumericalMathFunctionCollection & functionCollection);

  /** Linear combination function constructor */
  NumericalMathFunction(const NumericalMathFunctionCollection & functionCollection,
                        const NumericalPoint & coefficients);

  /** Dual linear combination function constructor */
  NumericalMathFunction(const NumericalMathFunctionCollection & functionCollection,
                        const NumericalSample & coefficients);

  /** Simplified analytical formula constructor */
  NumericalMathFunction(const String & inputVariableName,
                        const String & formula,
                        const String & outputVariableName = "outputVariable");

#ifndef SWIG
  /** Constructor from implementations */
  NumericalMathFunction(const EvaluationImplementation & evaluationImplementation,
                        const GradientImplementation & gradientImplenmentation,
                        const HessianImplementation  & hessianImplementation);
#endif

  /** Constructor from samples */
  NumericalMathFunction(const NumericalSample & inputSample,
                        const NumericalSample & outputSample);

  /** Constructor from field using P1 Lagrange interpolation */
  NumericalMathFunction(const Field & field);

  /** Constructor by splitting the input of a function between variables and parameters */
  NumericalMathFunction(const NumericalMathFunction & function,
                        const Indices & set,
                        const Bool parametersSet = true);

  NumericalMathFunction(const NumericalMathFunction & function,
                        const Indices & set,
                        const NumericalPoint & referencePoint,
                        const Bool parametersSet = true);

  /** Comparison operator */
  Bool operator ==(const NumericalMathFunction & other) const;

  /** String converter */
  virtual String __repr__() const;

  /** String converter */
  virtual String __str__(const String & offset = "") const;



  /** @brief Enable the internal cache
   *
   * The cache stores previously computed output values, so calling the cache before processing the %NumericalMathFunction
   * can save much time and avoid useless computations. However, calling the cache can eat time if the computation is
   * very short. So cache is disabled by default, except when the underlying implementation uses a wrapper.
   *
   * The reason is that building and linking to a wrapper is an extra burden that is valuable only if the computation
   * code is long enough to justify it. Calling the cache in this case will save time for sure.
   */
  void enableCache() const;

  /** @brief Disable the internal cache
   * @see enableCache()
   */
  void disableCache() const;

  /** @brief Test the internal cache activity
   * @see enableCache()
   */
  Bool isCacheEnabled() const;

  /** @brief Returns the number of successful hits in the cache
   */
  UnsignedInteger getCacheHits() const;

  /** @brief Add some content to the cache
   */
  void addCacheContent(const NumericalSample & inSample, const NumericalSample & outSample);

  /** @brief Returns the cache input
   */
  NumericalSample getCacheInput() const;

  /** @brief Returns the cache output
   */
  NumericalSample getCacheOutput() const;

  /** @brief Empty the cache
   */
  void clearCache() const;

  /** Enable or disable the input/output history
   * The input and output strategies store input and output values of the function,
   * in order to allow to retrieve these values e.g. after the execution of an allgorithm
   * for which the user has no access to the generated inputs and the corresponding outut.
   */
  void enableHistory() const;

  /** @brief Disable the history mechanism
   * @see enableHistory()
   */
  void disableHistory() const;

  /** @brief Test the history mechanism activity
   * @see enableHistory()
   */
  Bool isHistoryEnabled() const;

  /** @brief Clear the history mechanism
   * @see enableHistory()
   */
  void clearHistory() const;

  /** @brief Retrieve the history of the input values
   * @see enableHistory()
   */
  HistoryStrategy getHistoryInput() const;

  /** @brief Retrieve the history of the output values
   * @see enableHistory()
   */
  HistoryStrategy getHistoryOutput() const;

  /** Function implementation accessors */
  void setEvaluation(const EvaluationImplementation & evaluation);
  const EvaluationImplementation & getEvaluation() const;

  /** Gradient implementation accessors */
  void setGradient(const NumericalMathGradientImplementation & gradient);
#ifndef SWIG
  void setGradient(const GradientImplementation & gradient);
#endif
  const GradientImplementation & getGradient() const;

  /** Hessian implementation accessors */
  void setHessian(const NumericalMathHessianImplementation & hessian);
#ifndef SWIG
  void setHessian(const HessianImplementation & hessian);
#endif
  const HessianImplementation & getHessian() const;

  /** Flag for default gradient accessors */
  Bool getUseDefaultGradientImplementation() const;
  void setUseDefaultGradientImplementation(const Bool gradientFlag);

  /** Flag for default hessian accessors */
  Bool getUseDefaultHessianImplementation() const;
  void setUseDefaultHessianImplementation(const Bool hessianFlag);


  /** Multiplication of two 1D output functions with the same input dimension */
  virtual ProductNumericalMathFunction operator * (const NumericalMathFunction & right) const;

  /** Addition of two functions with the same input and output dimensions */
  virtual NumericalMathFunction operator + (const NumericalMathFunction & right) const;

  /** Soustraction of two functions with the same input and output dimensions */
  virtual NumericalMathFunction operator - (const NumericalMathFunction & right) const;

  /** Operator () */
  NumericalPoint operator() (const NumericalPoint & inP) const;
  NumericalPoint operator() (const NumericalPoint & inP,
                             const NumericalPoint & parameters);

  NumericalSample operator() (const NumericalSample & inS) const;

  Field operator() (const Field & inTS) const;


  /** Method gradient() returns the Jacobian transposed matrix of the function at point */
  Matrix gradient(const NumericalPoint & inP) const;
  Matrix gradient(const NumericalPoint & inP,
                  const NumericalPoint & parameters);

  /** Method hessian() returns the symmetric tensor of the function at point */
  SymmetricTensor hessian(const NumericalPoint & inP) const;
  SymmetricTensor hessian(const NumericalPoint & inP,
                          const NumericalPoint & parameters);

  /** Gradient according to the marginal parameters */
  virtual Matrix parameterGradient(const NumericalPoint & inP) const;
  virtual Matrix parameterGradient(const NumericalPoint & inP,
                                    const NumericalPoint & parameters);

  /** Parameters value and description accessor */
  virtual NumericalPointWithDescription getParameter() const;
  virtual void setParameter(const NumericalPointWithDescription & parameters);

  /** Accessor for parameter dimension */
  UnsignedInteger getParameterDimension() const;

  /** Accessor for input point dimension */
  UnsignedInteger getInputDimension() const;

  /** Accessor for output point dimension */
  UnsignedInteger getOutputDimension() const;

  /** Description Accessor, i.e. the names of the input and output parameters */
  void setDescription(const Description & description);
  Description getDescription() const;

  /** Input description Accessor, i.e. the names of the input parameters */
  Description getInputDescription() const;

  /** Output description Accessor, i.e. the names of the Output parameters */
  Description getOutputDescription() const;

  /** Get the i-th marginal function */
  NumericalMathFunction getMarginal(const UnsignedInteger i) const;

  /** Get the function corresponding to indices components */
  NumericalMathFunction getMarginal(const Indices & indices) const;

  /** Number of calls to the evaluation */
  UnsignedInteger getCallsNumber() const;
  UnsignedInteger getEvaluationCallsNumber() const;

  /** Number of calls to the gradient */
  UnsignedInteger getGradientCallsNumber() const;

  /** Number of calls to the hessian */
  UnsignedInteger getHessianCallsNumber() const;

  /** Draw the given 1D marginal output as a function of the given 1D marginal input around the given central point */
  virtual Graph draw(const UnsignedInteger inputMarginal,
                     const UnsignedInteger outputMarginal,
                     const NumericalPoint & centralPoint,
                     const NumericalScalar xMin,
                     const NumericalScalar xMax,
                     const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluationImplementation-DefaultPointNumber"),
                     const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;

  /** Draw the given 1D marginal output as a function of the given 2D marginal input around the given central point */
  virtual Graph draw(const UnsignedInteger firstInputMarginal,
                     const UnsignedInteger secondInputMarginal,
                     const UnsignedInteger outputMarginal,
                     const NumericalPoint & centralPoint,
                     const NumericalPoint & xMin,
                     const NumericalPoint & xMax,
                     const Indices & pointNumber = Indices(2, ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluationImplementation-DefaultPointNumber")),
                     const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;

  /** Draw the output of the function with respect to its input when the input and output dimensions are 1 */
  virtual Graph draw(const NumericalScalar xMin,
                     const NumericalScalar xMax,
                     const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluationImplementation-DefaultPointNumber"),
                     const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;

  /** Draw the output of the function with respect to its input when the input dimension is 2 and the output dimension is 1 */
  virtual Graph draw(const NumericalPoint & xMin,
                     const NumericalPoint & xMax,
                     const Indices & pointNumber = Indices(2, ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluationImplementation-DefaultPointNumber")),
                     const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;

  /** Static methods for documentation of analytical fnctions */
  static Description GetValidConstants();
  static Description GetValidFunctions();
  static Description GetValidOperators();

}; /* class NumericalMathFunction */


END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_NUMERICALMATHFUNCTION_HXX */