/usr/include/openturns/NumericalMathFunctionImplementation.hxx is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | // -*- C++ -*-
/**
* @brief Abstract top-level class for all numerical math function implementations
*
* Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_NUMERICALMATHFUNCTIONIMPLEMENTATION_HXX
#define OPENTURNS_NUMERICALMATHFUNCTIONIMPLEMENTATION_HXX
#include "PersistentObject.hxx"
#include "NumericalPoint.hxx"
#include "NumericalPointWithDescription.hxx"
#include "NumericalSample.hxx"
#include "Field.hxx"
#include "Indices.hxx"
#include "Pointer.hxx"
#include "NumericalMathEvaluationImplementation.hxx"
#include "NumericalMathGradientImplementation.hxx"
#include "NumericalMathHessianImplementation.hxx"
#include "Description.hxx"
#include "Graph.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class NumericalMathFunctionImplementation
*
* The class that simulates a numerical math function,
* its gradient and its hessian. This class is just an interface
* to actual implementation objects that can be hot-replaced
* during computation. Each implementation object refers to
* the evaluation, the gradient or the hessian.
*/
class OT_API NumericalMathFunctionImplementation
: public PersistentObject
{
CLASSNAME;
public:
/* Some typedefs for easy reading */
typedef Pointer<NumericalMathFunctionImplementation> Implementation;
typedef NumericalMathEvaluationImplementation::Implementation EvaluationImplementation;
typedef NumericalMathGradientImplementation::Implementation GradientImplementation;
typedef NumericalMathHessianImplementation::Implementation HessianImplementation;
private:
/** List of muParser valid constants */
static Description ValidConstants_;
/** List of muParser valid functions */
static Description ValidFunctions_;
/** List of muParser valid operators */
static Description ValidOperators_;
/** Flag to tell if the documentation has been initialized */
static Bool IsDocumentationInitialized_;
/** Method that initialize the fields related to the documentation of the analytical functions */
static void InitializeDocumentation();
public:
/** Static methods for documentation of analytical fnctions */
static Description GetValidConstants();
static Description GetValidFunctions();
static Description GetValidOperators();
public:
/** Default constructor */
NumericalMathFunctionImplementation();
/** Analytical formula constructor */
NumericalMathFunctionImplementation(const Description & inputVariablesNames,
const Description & outputVariablesNames,
const Description & formulas);
/** Database constructor */
NumericalMathFunctionImplementation(const NumericalSample & inputSample,
const NumericalSample & outputSample);
/** Constructor from implementations */
NumericalMathFunctionImplementation(const EvaluationImplementation & funcImpl,
const GradientImplementation & gradImpl,
const HessianImplementation & hessImpl);
/** Single function implementation constructor */
NumericalMathFunctionImplementation(const EvaluationImplementation & evaluationImplementation);
/** Multiplication of two 1D output functions with the same input dimension */
virtual NumericalMathFunctionImplementation operator * (const NumericalMathFunctionImplementation & right) const;
/** Multiplication of two 1D output functions with the same input dimension */
virtual NumericalMathFunctionImplementation operator * (const Implementation & p_right) const;
/** Virtual constructor */
virtual NumericalMathFunctionImplementation * clone() const;
/** Comparison operator */
Bool operator ==(const NumericalMathFunctionImplementation & other) const;
/** String converter */
virtual String __repr__() const;
virtual String __str__(const String & offset = "") const;
/** @brief Enable the internal cache
*
* The cache stores previously computed output values, so calling the cache before processing the %NumericalMathFunction
* can save much time and avoid useless computations. However, calling the cache can eat time if the computation is
* very short. So cache is disabled by default, except when the underlying implementation uses a wrapper.
*
* The reason is that building and linking to a wrapper is an extra burden that is valuable only if the computation
* code is long enough to justify it. Calling the cache in this case will save time for sure.
*/
void enableCache() const;
/** @brief Disable the internal cache
* @see enableCache()
*/
void disableCache() const;
/** @brief Test the internal cache activity
* @see enableCache()
*/
Bool isCacheEnabled() const;
/** @brief Returns the number of successful hits in the cache
*/
UnsignedInteger getCacheHits() const;
/** @brief Add some content to the cache
*/
void addCacheContent(const NumericalSample & inSample, const NumericalSample & outSample);
/** @brief Returns the cache input
*/
NumericalSample getCacheInput() const;
/** @brief Returns the cache output
*/
NumericalSample getCacheOutput() const;
void clearCache() const;
/** Enable or disable the input/output history
* The input and output strategies store input and output values of the function,
* in order to allow to retrieve these values e.g. after the execution of an allgorithm
* for which the user has no access to the generated inputs and the corresponding outut.
*/
void enableHistory() const;
/** @brief Disable the history mechanism
* @see enableHistory()
*/
void disableHistory() const;
/** @brief Test the history mechanism activity
* @see enableHistory()
*/
Bool isHistoryEnabled() const;
/** @brief Clear the history mechanism
* @see enableHistory()
*/
void clearHistory() const;
/** @brief Retrieve the history of the input values
* @see enableHistory()
*/
HistoryStrategy getHistoryInput() const;
/** @brief Retrieve the history of the output values
* @see enableHistory()
*/
HistoryStrategy getHistoryOutput() const;
/** Function implementation accessors */
void setEvaluation(const EvaluationImplementation & evaluation);
const EvaluationImplementation & getEvaluation() const;
/** Gradient implementation accessors */
void setGradient(const GradientImplementation & gradient);
const GradientImplementation & getGradient() const;
/** Hessian implementation accessors */
void setHessian(const HessianImplementation & hessian);
const HessianImplementation & getHessian() const;
/** Flag for default gradient accessors */
Bool getUseDefaultGradientImplementation() const;
void setUseDefaultGradientImplementation(const Bool gradientFlag);
/** Flag for default hessian accessors */
Bool getUseDefaultHessianImplementation() const;
void setUseDefaultHessianImplementation(const Bool hessianFlag);
/** Operator () */
NumericalPoint operator() (const NumericalPoint & inP) const;
NumericalPoint operator() (const NumericalPoint & inP,
const NumericalPoint & parameters);
NumericalSample operator() (const NumericalSample & inS) const;
Field operator() (const Field & inField) const;
/** Method gradient() returns the Jacobian transposed matrix of the function at point */
Matrix gradient(const NumericalPoint & inP) const;
Matrix gradient(const NumericalPoint & inP,
const NumericalPoint & parameters);
/** Method hessian() returns the symmetric tensor of the function at point */
SymmetricTensor hessian(const NumericalPoint & inP) const;
SymmetricTensor hessian(const NumericalPoint & inP,
const NumericalPoint & parameters);
/** Gradient according to the marginal parameters */
virtual Matrix parameterGradient(const NumericalPoint & inP) const;
virtual Matrix parameterGradient(const NumericalPoint & inP,
const NumericalPoint & parameters);
/** Parameters value and description accessor */
virtual NumericalPointWithDescription getParameter() const;
virtual void setParameter(const NumericalPointWithDescription & parameters);
virtual void setParameter(const NumericalPoint & parameters);
/** Accessor for parameter dimension */
UnsignedInteger getParameterDimension() const;
/** Accessor for input point dimension */
UnsignedInteger getInputDimension() const;
/** Accessor for output point dimension */
UnsignedInteger getOutputDimension() const;
/** Description Accessor, i.e. the names of the input and output parameters */
void setDescription(const Description & description);
Description getDescription() const;
/** Input description Accessor, i.e. the names of the input parameters */
Description getInputDescription() const;
/** Output description Accessor, i.e. the names of the Output parameters */
Description getOutputDescription() const;
/** Get the i-th marginal function */
virtual Implementation getMarginal(const UnsignedInteger i) const;
/** Get the function corresponding to indices components */
virtual Implementation getMarginal(const Indices & indices) const;
/** Number of calls to the evaluation */
UnsignedInteger getEvaluationCallsNumber() const;
/** Number of calls to the gradient */
UnsignedInteger getGradientCallsNumber() const;
/** Number of calls to the hessian */
UnsignedInteger getHessianCallsNumber() const;
/** Draw the given 1D marginal output as a function of the given 1D marginal input around the given central point */
virtual Graph draw(const UnsignedInteger inputMarginal,
const UnsignedInteger outputMarginal,
const NumericalPoint & centralPoint,
const NumericalScalar xMin,
const NumericalScalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluationImplementation-DefaultPointNumber"),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the given 1D marginal output as a function of the given 2D marginal input around the given central point */
virtual Graph draw(const UnsignedInteger firstInputMarginal,
const UnsignedInteger secondInputMarginal,
const UnsignedInteger outputMarginal,
const NumericalPoint & centralPoint,
const NumericalPoint & xMin,
const NumericalPoint & xMax,
const Indices & pointNumber = Indices(2, ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluationImplementation-DefaultPointNumber")),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the output of the function with respect to its input when the input and output dimensions are 1 */
virtual Graph draw(const NumericalScalar xMin,
const NumericalScalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluationImplementation-DefaultPointNumber"),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the output of the function with respect to its input when the input dimension is 2 and the output dimension is 1 */
virtual Graph draw(const NumericalPoint & xMin,
const NumericalPoint & xMax,
const Indices & pointNumber = Indices(2, ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluationImplementation-DefaultPointNumber")),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Method save() stores the object through the StorageManager */
void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
void load(Advocate & adv);
private:
/** A pointer on the actual numerical math function implementation */
EvaluationImplementation p_evaluationImplementation_;
/** A pointer on the actual numerical math gradient implementation */
GradientImplementation p_gradientImplementation_;
/** A pointer on the actual numerical math hessian implementation */
HessianImplementation p_hessianImplementation_;
protected:
/** Flag to tell if the current gradient is a default implementation */
mutable Bool useDefaultGradientImplementation_;
/** Flag to tell if the curren hessian is a default implementation */
mutable Bool useDefaultHessianImplementation_;
}; /* class NumericalMathFunctionImplementation */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_NUMERICALMATHFUNCTIONIMPLEMENTATION_HXX */
|