This file is indexed.

/usr/include/openturns/SpecFunc.hxx is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//                                               -*- C++ -*-
/**
 *  @brief OpenTURNS wrapper to a library of special functions
 *
 *  Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_SPECFUNC_HXX
#define OPENTURNS_SPECFUNC_HXX

#include "OTprivate.hxx"

/* Many mathematical functions lack on Windows when using
   Microsoft or Intel compilers.  We use Boost to define
   them here, so that these definitions are not duplicated
   across many files.  */
#ifdef _MSC_VER
#include <boost/math/special_functions.hpp>
#include <boost/numeric/conversion/converter_policies.hpp>

using boost::math::asinh;
using boost::math::acosh;
using boost::math::atanh;
using boost::math::cbrt;
using boost::math::erf;
using boost::math::erfc;
using boost::math::lgamma;
using boost::math::tgamma;
using boost::math::log1p;
using boost::math::expm1;

using boost::math::trunc;
using boost::math::round;

/* log2 is not defined */
static inline double log2(double x)
{
  return log(x) / log(2.);
}
/* rint is not defined */
static inline double rint(double x)
{
  return boost::numeric::RoundEven<double>::nearbyint(x);
}
/* nearbyint is not defined */
static inline double nearbyint(double x)
{
  return boost::numeric::RoundEven<double>::nearbyint(x);
}

#endif /* _MSC_VER */

BEGIN_NAMESPACE_OPENTURNS

class OT_API SpecFunc
{

public:

  // 0.39894228040143267 = 1 / sqrt(2.pi)
  static const NumericalScalar ISQRT2PI;
  // 2.5066282746310005024 = sqrt(2.pi)
  static const NumericalScalar SQRT2PI;
  // 0.91893853320467274177 = log(sqrt(2.pi))
  static const NumericalScalar LOGSQRT2PI;
  // 0.57721566490153286 = Euler constant gamma
  static const NumericalScalar EulerConstant;
  // 1.64493406684822643 = pi^2 / 6
  static const NumericalScalar PI2_6;
  // 1.28254983016118640 = pi / sqrt(6)
  static const NumericalScalar PI_SQRT6;
  // 0.45005320754569466 = gamma * sqrt(6) / pi
  static const NumericalScalar EULERSQRT6_PI;
  // 3.28986813369645287 = pi^2 / 3
  static const NumericalScalar PI2_3;
  // 0.55132889542179204 = sqrt(3) / pi
  static const NumericalScalar SQRT3_PI;
  // 1.81379936423421785 = pi / sqrt(3)
  static const NumericalScalar PI_SQRT3;
  // 1.20205690315959429 = Zeta(3)
  static const NumericalScalar ZETA3;
  // Maximum number of iterations for algorithms
  static const UnsignedInteger MaximumIteration;
  // Maximum precision for algorithms
  static const NumericalScalar Precision;
  // Minimum positive real number
  static const NumericalScalar MinNumericalScalar;
  static const NumericalScalar LogMinNumericalScalar;
  // Maximum positive real number
  static const NumericalScalar MaxNumericalScalar;
  static const NumericalScalar LogMaxNumericalScalar;
  // Real number accuracy
  static const NumericalScalar NumericalScalarEpsilon;

  // Some facilities for NaN and inf
  static Bool IsNaN(const NumericalScalar value);
  static Bool IsInf(const NumericalScalar value);
  static Bool IsNormal(const NumericalScalar value);

  // Modified first kind Bessel function of order 0: BesselI0(x) = \sum_{m=0}\infty\frac{1}{m!^2}\left(\frac{x}{2}\right)^{2m}
private:
  static NumericalScalar SmallCaseBesselI0(const NumericalScalar x);
  static NumericalScalar LargeCaseLogBesselI0(const NumericalScalar x);
public:
  static NumericalScalar BesselI0(const NumericalScalar x);
  static NumericalScalar LogBesselI0(const NumericalScalar x);
  // Modified first kind Bessel function of order 1: BesselI1(x) = \sum_{m=0}\infty\frac{1}{m!(m+1)!}\left(\frac{x}{2}\right)^{2m+1}
private:
  static NumericalScalar SmallCaseBesselI1(const NumericalScalar x);
  static NumericalScalar LargeCaseLogBesselI1(const NumericalScalar x);
public:
  static NumericalScalar BesselI1(const NumericalScalar x);
  static NumericalScalar LogBesselI1(const NumericalScalar x);
  // Difference between the logarithms of BesselI1 and BesselI0:
  // DeltaLogBesselI10(x) = log(BesselI1(x)) - log(BesselI0(x))
private:
  static NumericalScalar LargeCaseDeltaLogBesselI10(const NumericalScalar x);
public:
  static NumericalScalar DeltaLogBesselI10(const NumericalScalar x);
  // Modified second kind Bessel function of order nu: BesselK(nu, x)=\frac{\pi}{2}\frac{I_{-\nu}(x)-I_[\nu}(x)}{\sin{\nu\pi}}
  static NumericalScalar LogBesselK(const NumericalScalar nu,
                                    const NumericalScalar x);
  static NumericalScalar BesselK(const NumericalScalar nu,
                                 const NumericalScalar x);
  static NumericalScalar BesselKDerivative(const NumericalScalar nu,
      const NumericalScalar x);
  // Beta function: beta(a, b) = \int_0^1 t^{a-1}.(1-t)^{b-1} dt
  static NumericalScalar Beta(const NumericalScalar a,
                              const NumericalScalar b);
  // Incomplete beta function: betaInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt
  static NumericalScalar IncompleteBeta(const NumericalScalar a,
                                        const NumericalScalar b,
                                        const NumericalScalar x,
                                        const Bool tail = false);
  // Incomplete beta function inverse with respect to x
  static NumericalScalar IncompleteBetaInverse(const NumericalScalar a,
      const NumericalScalar b,
      const NumericalScalar x,
      const Bool tail = false);
  // Incomplete beta ratio function: betaRatioInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt / beta(a, b)
  static NumericalScalar RegularizedIncompleteBeta(const NumericalScalar a,
      const NumericalScalar b,
      const NumericalScalar x,
      const Bool tail = false);
  // Incomplete beta ratio function inverse with respect to x
  static NumericalScalar RegularizedIncompleteBetaInverse(const NumericalScalar a,
      const NumericalScalar b,
      const NumericalScalar x,
      const Bool tail = false);
  // Natural logarithm of the beta function
  static NumericalScalar LnBeta(const NumericalScalar a,
                                const NumericalScalar b);
  static NumericalScalar LogBeta(const NumericalScalar a,
                                 const NumericalScalar b);
  // Dawson function: Dawson(x) = \exp(-x^2) * \int_0^x \exp(t^2) dt
  static NumericalScalar Dawson(const NumericalScalar x);
  static NumericalComplex Dawson(const NumericalComplex & z);
  // Debye function of order n: DebyeN(x, n) = n / x^n \int_0^x t^n/(\exp(t)-1) dt
  static NumericalScalar Debye(const NumericalScalar x,
                               const UnsignedInteger n);
  // DiLog function: Dilog(x) = -\int_0^x \log(1-t)/t dt
  static NumericalScalar DiLog(const NumericalScalar x);
  // Exponential integral function: Ei(x) = -\int_{-x}^{\infty}exp(-t)/t dt
  static NumericalScalar Ei(const NumericalScalar x);
  // Complex exponential integral function: Ei(z) = -\int_{-z}^{\infty}exp(-t)/t dt
  static NumericalComplex Ei(const NumericalComplex & z);
  // Complex Faddeeva function: Faddeeva(z) = exp(-z^2)\erfc(-I*z)
  static NumericalComplex Faddeeva(const NumericalComplex & z);
  // Imaginary part of the Faddeeva function: FaddeevaIm(z) = Im(Faddeeva(x))
  static NumericalScalar FaddeevaIm(const NumericalScalar x);
  // Gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
  static NumericalScalar Gamma(const NumericalScalar a);
  // igamma1pm1(a) = 1 / gamma(1 + a) - 1
  static NumericalScalar IGamma1pm1(const NumericalScalar a);
  // GammaCorrection(a) = LogGamma(a) - log(sqrt(2.Pi)) + a - (a - 1/2) log(a)
  static NumericalScalar GammaCorrection(const NumericalScalar a);
  // Complex gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
  static NumericalComplex Gamma(const NumericalComplex & a);
  // Natural logarithm of the gamma function
  static NumericalScalar LnGamma(const NumericalScalar a);
  static NumericalScalar LogGamma(const NumericalScalar a);
  static NumericalScalar LogGamma1p(const NumericalScalar a);
  static NumericalComplex LogGamma(const NumericalComplex & a);
  // Incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt
  static NumericalScalar IncompleteGamma(const NumericalScalar a,
                                         const NumericalScalar x,
                                         const Bool tail = false);
  // Incomplete gamma function inverse with respect to x
  static NumericalScalar IncompleteGammaInverse(const NumericalScalar a,
      const NumericalScalar x,
      const Bool tail = false);
  // Regularized incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt / \Gamma(a)
  static NumericalScalar RegularizedIncompleteGamma(const NumericalScalar a,
      const NumericalScalar x,
      const Bool tail = false);
  // Regularized incomplete gamma function inverse with respect to x
  static NumericalScalar RegularizedIncompleteGammaInverse(const NumericalScalar a,
      const NumericalScalar x,
      const Bool tail = false);
  // Digamma function: psi(x) = ((dgamma/dx) / gamma)(x)
  static NumericalScalar DiGamma(const NumericalScalar x);
  static NumericalScalar Psi(const NumericalScalar x);
  // Inverse of the DiGamma function
  static NumericalScalar DiGammaInv(const NumericalScalar a);
  // Trigamma function: TriGamma(x) = ((d^2gamma/dx^2) / gamma)(x)
  static NumericalScalar TriGamma(const NumericalScalar x);
  // Hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
  static NumericalScalar HyperGeom_1_1(const NumericalScalar p1,
                                       const NumericalScalar q1,
                                       const NumericalScalar x);
  // Complex hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
  static NumericalComplex HyperGeom_1_1(const NumericalScalar p1,
                                        const NumericalScalar q1,
                                        const NumericalComplex & x);
  // Hypergeometric function of type (2,1): hyperGeom_2_1(p1, p2, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k)] * x^n / n!
  static NumericalScalar HyperGeom_2_1(const NumericalScalar p1,
                                       const NumericalScalar p2,
                                       const NumericalScalar q1,
                                       const NumericalScalar x);
  // Hypergeometric function of type (2,2): hyperGeom_2_1(p1, p2, q1, q2, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k) / (q2 + k)] * x^n / n!
  static NumericalScalar HyperGeom_2_2(const NumericalScalar p1,
                                       const NumericalScalar p2,
                                       const NumericalScalar q1,
                                       const NumericalScalar q2,
                                       const NumericalScalar x);
  // Erf function erf(x) = 2 / \sqrt(\pi) . \int_0^x \exp(-t^2) dt
  static NumericalScalar Erf(const NumericalScalar x);
  static NumericalComplex Erf(const NumericalComplex & z);
  // Erf function erfi(x) = -i.erf(iz)
  static NumericalScalar ErfI(const NumericalScalar x);
  static NumericalComplex ErfI(const NumericalComplex & z);
  // Erf function erfc(x) = 1 - erf(x)
  static NumericalScalar ErfC(const NumericalScalar x);
  static NumericalComplex ErfC(const NumericalComplex & z);
  // Erf function erfcx(x) = exp(x^2).erfc(x)
  static NumericalScalar ErfCX(const NumericalScalar x);
  static NumericalComplex ErfCX(const NumericalComplex & z);
  // Inverse of the erf function
  static NumericalScalar ErfInverse(const NumericalScalar x);
  // Real branch of Lambert W function (principal or secndary)
  static NumericalScalar LambertW(const NumericalScalar x,
                                  const Bool principal = true);
  // Accurate value of log(1+z) for |z|<<1
  static NumericalComplex Log1p(const NumericalComplex & z);
  // Accurate value of exp(z)-1 for |z|<<1
  static NumericalComplex Expm1(const NumericalComplex & z);
  // Accurate value of log(1-exp(-x)) for all x
  static NumericalComplex Log1MExp(const NumericalScalar x);
  // MarcumQ- function
  //      static NumericalScalar MarcumQFunction(const NumericalScalar a,const NumericalScalar b);

  // Next power of two
  static UnsignedInteger NextPowerOfTwo(const UnsignedInteger n);

  // Compute the number of bits sets to 1 in n
  // Best known algorithm for 64 bits n and fast multiply
  static UnsignedInteger BitCount(const Unsigned64BitsInteger n);

  // Missing functions in cmath wrt math.h as of C++98
  static NumericalScalar Acosh(const NumericalScalar x);
  static NumericalScalar Asinh(const NumericalScalar x);
  static NumericalScalar Atanh(const NumericalScalar x);
  static NumericalScalar Cbrt(const NumericalScalar x);

}; /* class SpecFunc */

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_SPECFUNC_HXX */