/usr/include/openturns/swig/Brent_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | %feature("docstring") OT::Brent
"Brent algorithm solver for 1D non linear equations.
Available constructor:
Brent()
Brent(*absError, relError, resError, maximumFunctionEvaluation*)
Parameters
----------
absError : positive float
Absolute error: distance between two successive iterates at the end point.
Default is :math:`10^{-5}`.
relError : positive float
Relative error: distance between the two last successive iterates with
regards to the last iterate. Default is :math:`10^{-5}`.
resError : positive float
Residual error: difference between the last iterate value and the expected
value. Default is :math:`10^{-8}`.
maximumFunctionEvaluation : int
The maximum number of evaluations of the function. Default is :math:`100`.
See also
--------
Solver, Bisection, Secant
Notes
-----
The Brent solver is a mix of Bisection, Secant and inverse quadratic
interpolation."
// ---------------------------------------------------------------------
%feature("docstring") OT::Brent::solve
"Solve an equation.
**Available usages**:
solve(*function, value, infPoint, supPoint*)
solve(*function, value, infPoint, supPoint, infValue, supValue*)
Parameters
----------
function : :class:`~openturns.NumericalMathFunction`
The function of the equation :math:`function(x) = value` to be solved in the
interval :math:`[infPoint, supPoint]`.
value : float
The value of which the function must be equal.
infPoint : float
Lower bound of the interval definition of the variable :math:`x`.
supPoint : float
Upper bound of the interval definition of the variable :math:`x`.
infValue : float
The value such that :math:`infValue = function(infPoint)`. It must be of
opposite sign of :math:`supValue`.
supValue : float
The value such that :math:`supValue = function(supPoint)`. It must be of
opposite sign of :math:`infValue`.
Returns
-------
result : float
The result of the root research.
Notes
-----
If the function :math:`f` is continuous, the Brent solver will
converge towards a root of the equation :math:`function(x) = value` in
:math:`[infPoint, supPoint]`. If not, it will converge towards either a root or
a discontinuity point of :math:`f` on :math:`[infPoint, supPoint]`. Bisection
guarantees a convergence."
|