/usr/include/openturns/swig/Burr_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | %feature("docstring") OT::Burr
"Burr distribution.
Available constructors:
Burr(*c=1.0, k=1.0*)
Parameters
----------
c : float, :math:`c > 0`
k : float, :math:`k > 0`
Notes
-----
Its probability density function is defined as:
.. math::
f_X(x) = c k \\\\frac{x^{c - 1}}{(1 + x^c)^{k + 1}}, \\\\quad x \\\\in \\\\Rset^{+*}
with :math:`c, k > 0`.
Its only, first-order moment is:
.. math::
\\\\Expect{X} = k {\\\\rm B}(k - 1 / c, 1 + 1 / c)
where :math:`\\\\rm B` denotes Euler's beta function.
Examples
--------
Create a distribution:
>>> import openturns as ot
>>> distribution = ot.Burr(2., 3.)
Draw a sample:
>>> sample = distribution.getSample(10)"
// ---------------------------------------------------------------------
%feature("docstring") OT::Burr::getC
"Accessor to the parameter :math:`c`.
Returns
-------
c : float"
// ---------------------------------------------------------------------
%feature("docstring") OT::Burr::getK
"Accessor to the parameter :math:`k`.
Returns
-------
k : float"
// ---------------------------------------------------------------------
%feature("docstring") OT::Burr::setC
"Accessor to the parameter :math:`c`.
Parameters
----------
c : float, :math:`c > 0`"
// ---------------------------------------------------------------------
%feature("docstring") OT::Burr::setK
"Accessor to the parameter :math:`k`.
Parameters
----------
k : float, :math:`k > 0`"
|