This file is indexed.

/usr/include/openturns/swig/ClaytonCopula_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
%feature("docstring") OT::ClaytonCopula
"Clayton copula.

Available constructor:
    ClaytonCopula(*theta=2.0*)

Parameters
----------
theta : float
    Parameter :math:`\\\\theta`, :math:'\\\\theta \\\\geq -1'.

Notes
-----
The Clayton copula is a bivariate asymmmetric Archimedean copula, exhibiting
greater dependence in the negative tail than in the positive. It is defined by:

.. math::

    C(u_1, u_2) = (u_1^{-\\\\theta} + u_2^{-\\\\theta} - 1)^{-1/\\\\theta}

for :math:`(u_1, u_2) \\\\in [0, 1]^2`

And its generator is:

.. math::

    \\\\varphi(t) = \\\\frac{1}{\\\\theta} (t^{-\\\\theta} - 1)

The support of the copula is :math:`\\\\{ (u,v)\\\\in [0,1]^2, u^{-\\\\theta} +  v^{-\\\\theta} \\\\geq 1 \\\\}`. 

If :math:`\\\\theta <0`, the support is strictly included in :math:`[0,1]^2` and the frontier defined by :math:`\\\\{ (u,v)\\\\in [0,1]^2, u^{-\\\\theta} +  v^{-\\\\theta} = 1 \\\\}` has a mass not equal to zero. In that case, the copula is a non strict archimedean copula.

See also
--------
ArchimedeanCopula

Examples
--------
Create a distribution:

>>> import openturns as ot
>>> copula = ot.ClaytonCopula(2.5)

Draw a sample:

>>> sample = copula.getSample(10)"

// ---------------------------------------------------------------------

%feature("docstring") OT::ClaytonCopula::getTheta
"Get the parameter :math:`\\\\theta`.

Returns
-------
theta : float
    Parameter :math:`\\\\theta` of the copula."

// ---------------------------------------------------------------------

%feature("docstring") OT::ClaytonCopula::setTheta
"Set the parameter :math:`\\\\theta`.

Parameters
----------
theta : float
    Parameter :math:`\\\\theta` of the copula."