/usr/include/openturns/swig/ComplexMatrixImplementation_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | %define OT_ComplexMatrix_doc
"Complex Matrix.
Available constructors:
ComplexMatrix(*nr, nc*)
ComplexMatrix(*nr, nc, values*)
Parameters
----------
nr : integer
The number of rows of the complex matrix.
nc : integer
The number of columns of the complex matrix.
values : sequence of complex number
The sequence must have :math:`n_r \\\\times n_c` elements. It might be a
:class:`~openturns.NumericalComplexCollection` or a :class:`~openturns.NumericalScalarCollection`. Default is (0, 0).
See also
--------
ComplexTensor
Examples
--------
>>> import openturns as ot
>>> m = ot.ComplexMatrix(2, 2, [1+2j, 3+4j , 5+6j, 7+8j])
>>> print(m)
[[ (1,2) (5,6) ]
[ (3,4) (7,8) ]]
>>> m = ot.ComplexMatrix(2, 3, range(2*3))
>>> print(m)
[[ (0,0) (2,0) (4,0) ]
[ (1,0) (3,0) (5,0) ]]
Create a matrix from a numpy array:
>>> import numpy as np
>>> array = np.array([[1, 2], [3, 4], [5, 6]])
>>> m = ot.ComplexMatrix(array)
>>> print(m)
[[ (1,0) (2,0) ]
[ (3,0) (4,0) ]
[ (5,0) (6,0) ]]
"
%enddef
%feature("docstring") OT::ComplexMatrixImplementation
OT_ComplexMatrix_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_clean_doc
"Clean the matrix according to a specific threshold.
Parameters
----------
threshold : positive float
Numerical sample which is the collection of points stored by the history
strategy."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::clean
OT_ComplexMatrix_clean_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_conjugate_doc
"Accessor to the conjugate complex matrix.
Returns
-------
N : :class:`~openturns.ComplexMatrix`
The conjugate matrix :math:`\\\\mat{N}` of size :math:`n_r \\\\times n_c`
associated with the given complex matrix :math:`\\\\mat{M}` such as
:math:`N_{i, j} = \\\\overline{M}_{i, j}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::conjugate
OT_ComplexMatrix_conjugate_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_conjugateTranspose_doc
"Accessor to the transposed conjugate complex matrix.
Returns
-------
N : :class:`~openturns.ComplexMatrix`
The transposed conjugate matrix :math:`\\\\mat{N}` of size :math:`n_c \\\\times n_r`
associated with the given complex matrix :math:`\\\\mat{M}` such as
:math:`N_{i, j} = \\\\overline{M}_{j, i}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::conjugateTranspose
OT_ComplexMatrix_conjugateTranspose_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_getNbColumns_doc
"Accessor to the number of columns.
Returns
-------
nc : integer
The number of columns of :math:`\\\\mat{M}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::getNbColumns
OT_ComplexMatrix_getNbColumns_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_getNbRows_doc
"Accessor to the number of rows.
Returns
-------
nr : integer
The number of rows of :math:`\\\\mat{M}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::getNbRows
OT_ComplexMatrix_getNbRows_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_imag_doc
"Accessor to the imaginary part.
Returns
-------
imat : :class:`~openturns.Matrix`
A real matix :math:`\\\\mat{A}` of size :math:`n_r \\\\times n_c` such
:math:`A_{i, j} = \\\\mathrm{Im} (M_{i, j})`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::imag
OT_ComplexMatrix_imag_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_isEmpty_doc
"Test whether the matrix is empty or not.
Returns
-------
isEmpty : bool
Flag telling whether the dimensions of the matrix is zero."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::isEmpty
OT_ComplexMatrix_isEmpty_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_real_doc
"Accessor to the real part.
Returns
-------
rmat : :class:`~openturns.Matrix`
A real matix :math:`\\\\mat{A}` of size :math:`n_r \\\\times n_c` such
:math:`A_{i, j} = \\\\mathrm{Re} (M_{i, j})`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::real
OT_ComplexMatrix_real_doc
// ---------------------------------------------------------------------
%define OT_ComplexMatrix_transpose_doc
"Accessor to the transposed complex matrix.
Returns
-------
N : :class:`~openturns.ComplexMatrix`
The transposed matrix :math:`\\\\mat{N}` of size :math:`n_c \\\\times n_r`
associated with the given complex matrix :math:`\\\\mat{M}` such as
:math:`N_{i, j} = M_{j, i}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::transpose
OT_ComplexMatrix_transpose_doc
|