/usr/include/openturns/swig/CovarianceModelImplementation_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | %define OT_CovarianceModel_doc
"Covariance model.
Notes
-----
We consider :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d` a multivariate
stochastic process of dimension :math:`d`, where :math:`\\\\omega \\\\in \\\\Omega`
is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`,
:math:`\\\\vect{t}\\\\in \\\\cD` is a multivariate index and
:math:`X(\\\\omega, \\\\vect{t}) \\\\in \\\\Rset^d`.
We note :math:`X_{\\\\vect{t}}: \\\\Omega \\\\rightarrow \\\\Rset^d` the random variable at
index :math:`\\\\vect{t} \\\\in \\\\cD` defined by
:math:`X_{\\\\vect{t}}(\\\\omega)=X(\\\\omega, \\\\vect{t})` and
:math:`X(\\\\omega): \\\\cD \\\\mapsto \\\\Rset^d` a realization of the process
:math:`X`, for a given :math:`\\\\omega \\\\in \\\\Omega` defined by
:math:`X(\\\\omega)(\\\\vect{t})=X(\\\\omega, \\\\vect{t})`.
If the process is a second order process, we note:
- :math:`m : \\\\cD \\\\mapsto \\\\Rset^d` its *mean function*, defined by
:math:`m(\\\\vect{t})=\\\\Expect{X_{\\\\vect{t}}}`,
- :math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cM_{d \\\\times d}(\\\\Rset)` its
*covariance function*, defined by
:math:`C(\\\\vect{s}, \\\\vect{t})=\\\\Expect{(X_{\\\\vect{s}}-m(\\\\vect{s}))\\\\Tr{(X_{\\\\vect{t}}-m(\\\\vect{t}))}}`,
- :math:`R : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\mathcal{M}_{d \\\\times d}(\\\\Rset)` its
*correlation function*, defined for all :math:`(\\\\vect{s}, \\\\vect{t})`,
by :math:`R(\\\\vect{s}, \\\\vect{t})` such that for all :math:`(i,j)`,
:math:`R_{ij}(\\\\vect{s}, \\\\vect{t})=C_{ij}(\\\\vect{s}, \\\\vect{t})/\\\\sqrt{C_{ii}(\\\\vect{s}, \\\\vect{t})C_{jj}(\\\\vect{s}, \\\\vect{t})}`.
A CovarianceModel object can be created only through its derived classes:
:class:`~openturns.StationaryCovarianceModel`,
:class:`~openturns.UserDefinedCovarianceModel`,
:class:`~openturns.GeneralizedExponential`,
:class:`~openturns.AbsoluteExponential`,
:class:`~openturns.SquaredExponential`,
:class:`~openturns.ExponentialModel`,
:class:`~openturns.MaternModel`,
:class:`~openturns.SphericalModel`,
:class:`~openturns.ExponentiallyDampedCosineModel`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation
OT_CovarianceModel_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_computeAsScalar_doc
"Compute the covariance function for 1-d model.
Available usages:
computeAsScalar(s, t)
computeAsScalar(tau)
Parameters
----------
s, t : sequences of float
Inputs.
tau : sequence of float
Input.
Returns
-------
covariance : float
Covariance.
Notes
-----
*computeAsScalar* evaluates the covariance model
:math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cM_{d \\\\times d}(\\\\Rset)` at
:math:`(s,t)\\\\in \\\\Rset^n`:
.. math::
C(\\\\vect{s}, \\\\vect{t})=\\\\Expect{\\\\Tr{(X_{\\\\vect{s}}-m(\\\\vect{s}))(X_{\\\\vect{t}}-m(\\\\vect{t}))}}
In the second usage, the covariance model must be stationary. Then we note
:math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})` as
this quantity does not depend on :math:`\\\\vect{s}`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::computeAsScalar
OT_CovarianceModel_computeAsScalar_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_computeStandardRepresentative_doc
"Compute the standard representative function of the covariance model.
Available usages:
computeStandardRepresentative(s, t)
computeStandardRepresentative(tau)
Parameters
----------
s, t : floats or sequences of float
Inputs.
tau : floats orsequence of float
Input.
Returns
-------
rho : float
Scaling covariance.
Notes
-----
*computeStandardRepresentative* evaluates the correlation function on two spatial points:
:math:`\\\\rho : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\Rset`.
A covariance function express at :math:`(s,t)\\\\in \\\\Rset^n` as follows :
.. math::
C(\\\\vect{s}, \\\\vect{t}) = \\\\mat{\\\\Sigma} \\\\rho\\\\left(\\\\frac{\\\\vect{s}}{\\\\vect{\\\\theta}}, \\\\frac{\\\\vect{t}}{\\\\vect{\\\\theta}}\\\\right)
where :math:`\\\\frac{\\\\vect{s}}{\\\\vect{\\\\theta}} = (\\\\frac{\\\\vect{s}_1}{\\\\vect{\\\\theta}_1},\\\\cdots,\\\\frac{\\\\vect{s}_n}{\\\\vect{\\\\theta}_n})` is the scaled point and
:math:`\\\\mat{\\\\Sigma}` is a covariance matrix that explains the covariance structure.
In the second usage, the covariance model must be stationary."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::computeStandardRepresentative
OT_CovarianceModel_computeStandardRepresentative_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretize_doc
"Discretize the covariance function on a given RegularGrid/Mesh.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
Returns
-------
covarianceMatrix : :class:`~openturns.CovarianceMatrix`
Covariance matrix :math:`\\\\in\\\\cM_{nd\\\\times nd}(\\\\Rset)` (if the process is of
dimension :math:`d`).
Notes
-----
This method makes a discretization of the model on *meshOrGrid* composed of
the vertices :math:`(\\\\vect{t}_1, \\\\dots, \\\\vect{t}_{N-1})` and returns the
covariance matrix:
.. math ::
\\\\mat{C}_{1,\\\\dots,k} = \\\\left(
\\\\begin{array}{cccc}
C(\\\\vect{t}_1, \\\\vect{t}_1) &C(\\\\vect{t}_1, \\\\vect{t}_2) & \\\\dots & C(\\\\vect{t}_1, \\\\vect{t}_{k}) \\\\\\\\
\\\\dots & C(\\\\vect{t}_2, \\\\vect{t}_2) & \\\\dots & C(\\\\vect{t}_2, \\\\vect{t}_{k}) \\\\\\\\
\\\\dots & \\\\dots & \\\\dots & \\\\dots \\\\\\\\
\\\\dots & \\\\dots & \\\\dots & C(\\\\vect{t}_{k}, \\\\vect{t}_{k})
\\\\end{array} \\\\right)"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretize
OT_CovarianceModel_discretize_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeAndFactorize_doc
"Discretize and factorize the covariance function on a given RegularGrid/Mesh.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
Returns
-------
CholeskyMatrix : :class:`~openturns.TriangularMatrix`
Cholesky factor of the covariance matrix :math:`\\\\in\\\\cM_{nd\\\\times nd}(\\\\Rset)` (if the process is of
dimension :math:`d`).
Notes
-----
This method makes a discretization of the model on *meshOrGrid* composed of
the vertices :math:`(\\\\vect{t}_1, \\\\dots, \\\\vect{t}_{N-1})` thanks to the `discretize`
method and returns its Cholesky factor."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeAndFactorize
OT_CovarianceModel_discretizeAndFactorize_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeHMatrix_doc
"Discretize the covariance function on a given RegularGrid/Mesh using HMatrix result.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
Returns
-------
HMatrix : :class:`~openturns.HMatrix`
Covariance matrix :math:`\\\\in\\\\cM_{nd\\\\times nd}(\\\\Rset)` (if the process is of
dimension :math:`d`), stored in hierarchical format (H-Matrix)
Notes
-----
This method si similar to the *discretize* method. This method requires that OpenTURNS has been compiled with the hmat library.
The method is helpfull for very large parameters (Mesh, grid, NumericalSample) as its compress data.
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeHMatrix
OT_CovarianceModel_discretizeHMatrix_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeAndFactorizeHMatrix_doc
"Discretize and factorize the covariance function on a given RegularGrid/Mesh using HMatrix result.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
Returns
-------
HMatrix : :class:`~openturns.HMatrix`
Cholesk matrix :math:`\\\\in\\\\cM_{nd\\\\times nd}(\\\\Rset)` (if the process is of
dimension :math:`d`), stored in hierarchical format (H-Matrix)
Notes
-----
This method si similar to the *discretizeAndFactorize* method. This method requires that OpenTURNS has been compiled with the hmat library.
The method is helpfull for very large parameters (Mesh, grid, NumericalSample) as its compress data.
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeAndFactorizeHMatrix
OT_CovarianceModel_discretizeAndFactorizeHMatrix_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeRow_doc
"**(TODO)**"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeRow
OT_CovarianceModel_discretizeRow_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getAmplitude_doc
"Get the amplitude parameter of the covariance function.
Returns
-------
amplitude : :class:`~openturns.NumericalPoint`
The amplitude parameter used in the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getAmplitude
OT_CovarianceModel_getAmplitude_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getDimension_doc
"Get the dimension of the *CovarianceModel*.
Returns
-------
dimension : int
Dimension of the *CovarianceModel*."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getDimension
OT_CovarianceModel_getDimension_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_get_marginal
"Get the ith marginal of the model.
Returns
-------
marginal : int
index of marginal of the model."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getMarginal
OT_CovarianceModel_get_marginal
// ---------------------------------------------------------------------
%define OT_CovarianceModel_get_nugget_factor_doc
"Accessor to the nugget factor.
This parameter allows smooth predictions from noisy data.
The nugget is added to the diagonal of the assumed training covariance
(thanks to discretize) and acts as a Tikhonov regularization in the
problem.
Returns
-------
nuggetFactor : float
nugget factor used for the regularization of the discretized covariance matrix."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getNuggetFactor
OT_CovarianceModel_get_nugget_factor_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getParameter_doc
"Get the parameters of the covariance function.
Returns
-------
parameters : :class:`~openturns.NumericalPoint`
Sequence containing the parameters of the covariance function.
Usually the parameters is of size (spatialDim + dim) : the spatialDim first elements correpond
to the scale, the dim following to the amplitude."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getParameter
OT_CovarianceModel_getParameter_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getParameterDescription_doc
"Get the description of the covariance function parameters.
Returns
-------
descriptionParam : :class:`~openturns.Description`
Sequence containing the description for each component of the parameters."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getParameterDescription
OT_CovarianceModel_getParameterDescription_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getScale_doc
"Get the scale parameter of the covariance function.
Returns
-------
scale : :class:`~openturns.NumericalPoint`
The scale parameter used in the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getScale
OT_CovarianceModel_getScale_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getSpatialCorrelation_doc
"Get the spatial correlation matrix of the covariance function.
Returns
-------
spatialCorrelation : :class:`~openturns.CorrelationMatrix`
Correlation matrix :math:`\\\\mat{R} \\\\in \\\\mathcal{M}_{d \\\\times d}(\\\\Rset)`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getSpatialCorrelation
OT_CovarianceModel_getSpatialCorrelation_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getSpatialDimension_doc
"Get the spatial dimension of the covariance function.
Returns
-------
spatialDimension : int
SpatialDimension of the *CovarianceModel*."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getSpatialDimension
OT_CovarianceModel_getSpatialDimension_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_isDiagonal_doc
"Test whether the model is diagonal or not.
Returns
-------
isDiagonal : bool
*True* if the model is diagonal."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::isDiagonal
OT_CovarianceModel_isDiagonal_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_isStationary_doc
"Test whether the model is stationary or not.
Returns
-------
isStationary : bool
*True* if the model is stationary.
Notes
-----
The covariance function :math:`C` is stationary when it is invariant by
translation:
.. math::
\\\\forall(\\\\vect{s},\\\\vect{t},\\\\vect{h}) \\\\in \\\\cD, & \\\\, \\\\quad
C(\\\\vect{s}, \\\\vect{s}+\\\\vect{h}) = C(\\\\vect{t}, \\\\vect{t}+\\\\vect{h})
We note :math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::isStationary
OT_CovarianceModel_isStationary_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_partialGradient_doc
"Compute the gradient of the covariance function.
Parameters
----------
s, t : sequence of float
Inputs.
Returns
-------
gradient : :class:`~openturns.Matrix`
Gradient of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::partialGradient
OT_CovarianceModel_partialGradient_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setAmplitude_doc
"Set the amplitude parameter of the covariance function.
Parameters
----------
amplitude : :class:`~openturns.NumericalPoint`
The amplitude parameter to be used in the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setAmplitude
OT_CovarianceModel_setAmplitude_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setScale_doc
"Set the scale parameter of the covariance function.
Parameters
----------
scale : :class:`~openturns.NumericalPoint`
The scale parameter to be used in the covariance function.
It should be of size dimension."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setScale
OT_CovarianceModel_setScale_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_set_nugget_factor_doc
"Set the nugget factor for the regularization.
Acts on the discretized covariance matrix.
Parameters
----------
nuggetFactor : float
nugget factor to be used for the regularization of the discretized covariance matrix."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setNuggetFactor
OT_CovarianceModel_set_nugget_factor_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setParameter_doc
"Set the parameters of the covariance function.
Returns
-------
parameters : :class:`~openturns.NumericalPointWithDescription`
Sequence containing the parameters of the covariance function with a
description for each component.
The parameters should be of size (spatialDim + dim) : it sets the spatialDim first elements to scale
and the dim following to amplitude."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setParameter
OT_CovarianceModel_setParameter_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setSpatialCorrelation_doc
"Set the spatial correlation matrix of the covariance function.
Parameters
----------
spatialCorrelation : :class:`~openturns.CorrelationMatrix`
Correlation matrix :math:`\\\\mat{R} \\\\in \\\\mathcal{M}_{d \\\\times d}(\\\\Rset)`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setSpatialCorrelation
OT_CovarianceModel_setSpatialCorrelation_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_operator_doc
"Evaluate the covariance function.
Available usages:
__call__(s, t)
__call__(tau)
Parameters
----------
s, t : sequences of float
Inputs.
tau : sequence of float
Input.
Returns
-------
covariance : CovarianceMatrix
The evaluation of the covariance function.
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::operator()
OT_CovarianceModel_operator_doc
// ---------------------------------------------------------------------
|