This file is indexed.

/usr/include/openturns/swig/DirectionalSampling_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
%feature("docstring") OT::DirectionalSampling
"Directional simulation.

Available constructors:
    DirectionalSampling(*event=ot.Event()*)

    DirectionalSampling(*event, rootStrategy, samplingStrategy*)

Parameters
----------
event : :class:`~openturns.Event`
    Event we are computing the probability of.
rootStrategy : :class:`~openturns.RootStrategy`
    Strategy adopted to evaluate the intersections of each direction with the
    limit state function and take into account the contribution of the
    direction to the event probability. By default,
    *rootStrategy = ot.RootStrategy(ot.SafeAndSlow())*.
samplingStrategy : :class:`~openturns.SamplingStrategy`
    Strategy adopted to sample directions. By default,
    *samplingStrategy=ot.SamplingStrategy(ot.RandomDirection())*.

Notes
-----
Using the probability distribution of a random vector :math:`\\\\vect{X}`, we seek
to evaluate the following probability:

.. math::

    P_f = \\\\int_{\\\\Rset^{n_X}} \\\\mathbf{1}_{\\\\{g(\\\\ux,\\\\underline{d}) \\\\leq 0 \\\\}}f_{\\\\uX}(\\\\ux)d\\\\ux
        = \\\\Prob{g\\\\left( \\\\vect{X},\\\\vect{d} \\\\right) \\\\leq 0}

Here, :math:`\\\\vect{X}` is a random vector, :math:`\\\\vect{d}` a deterministic
vector, :math:`g(\\\\vect{X},\\\\vect{d})` the function known as *limit state function*
which enables the definition of the event
:math:`\\\\cD_f = \\\\{\\\\vect{X} \\\\in \\\\Rset^n \\\\, | \\\\, g(\\\\vect{X},\\\\vect{d}) \\\\le 0\\\\}`.
:math:`\\\\mathbf{1}_{ \\\\left\\\\{ g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0 \\\\right\\\\} }`
describes the indicator function equal to 1 if
:math:`g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0` and equal to 0 otherwise.

The directional simulation method is an accelerated sampling method. It implies
a preliminary iso-probabilistic transformation, as for :class:`~openturns.FORM`
and :class:`~openturns.SORM` methods; however, it remains based on sampling and
is thus not an approximation method.
In the transformed space, the (transformed) uncertain variables :math:`\\\\vect{U}`
are independent standard gaussian variables (mean equal to zero and standard
deviation equal to 1).

Roughly speaking, each simulation of the directional simulation algorithm is
made of three steps. For the :math:`i^\\\\textrm{th}` iteration, these steps are
the following:

- Let :math:`\\\\cS = \\\\big\\\\{ \\\\vect{u} \\\\big| ||\\\\vect{u}|| = 1 \\\\big\\\\}`. A point
  :math:`P_i` is drawn randomly on :math:`\\\\cS` according to an uniform
  distribution.

- In the direction starting from the origin and passing through :math:`P_i`,
  solutions of the equation :math:`g(\\\\vect{X},\\\\vect{d}) = 0` (i.e. limits of
  :math:`\\\\cD_f`) are searched. The set of values of :math:`\\\\vect{u}` that
  belong to :math:`\\\\cD_f` is deduced for these solutions: it is a subset
  :math:`I_i \\\\subset \\\\Rset`.

- Then, one calculates the probability :math:`q_i = \\\\Prob{ ||\\\\vect{U}|| \\\\in I_i }`.
  By property of independent standard variable, :math:`||\\\\vect{U}||^2` is a
  random variable distributed according to a chi-square distribution, which
  makes the computation effortless.

Finally, the estimate of the probability :math:`P_f` after :math:`N` simulations
is the following:

.. math::

    \\\\widehat{P}_{f,DS} = \\\\frac{1}{N} \\\\sum_{i=1}^N q_i

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myFunction = ot.NumericalMathFunction(['E', 'F', 'L', 'I'], ['d'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50., 1., 10., 5.], [1.]*4, ot.IdentityMatrix(4))
>>> # We create a 'usual' RandomVector from the Distribution
>>> vect = ot.RandomVector(myDistribution)
>>> # We create a composite random vector
>>> output = ot.RandomVector(myFunction, vect)
>>> # We create an Event from this RandomVector
>>> myEvent = ot.Event(output, ot.Less(), -3.0)
>>> # We create a DirectionalSampling algorithm
>>> myAlgo = ot.DirectionalSampling(myEvent, ot.MediumSafe(), ot.OrthogonalDirection())
>>> myAlgo.setMaximumOuterSampling(250)
>>> myAlgo.setBlockSize(4)
>>> myAlgo.setMaximumCoefficientOfVariation(0.1)
>>> # Perform the simulation
>>> myAlgo.run()
>>> print('Probability estimate=%.6f' % myAlgo.getResult().getProbabilityEstimate())
Probability estimate=0.169716"

// ---------------------------------------------------------------------

%feature("docstring") OT::DirectionalSampling::getRootStrategy
"Get the root strategy.

Returns
-------
strategy : :class:`~openturns.RootStrategy`
    Root strategy adopted."

// ---------------------------------------------------------------------

%feature("docstring") OT::DirectionalSampling::setRootStrategy
"Set the root strategy.

Parameters
----------
strategy : :class:`~openturns.RootStrategy`
    Root strategy adopted."

// ---------------------------------------------------------------------

%feature("docstring") OT::DirectionalSampling::getSamplingStrategy
"Get the direction sampling strategy.

Returns
-------
strategy : :class:`~openturns.SamplingStrategy`
    Direction sampling strategy adopted."

// ---------------------------------------------------------------------

%feature("docstring") OT::DirectionalSampling::setSamplingStrategy
"Set the direction sampling strategy.

Parameters
----------
strategy : :class:`~openturns.SamplingStrategy`
    Direction sampling strategy adopted."