This file is indexed.

/usr/include/openturns/swig/Dirichlet_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
%feature("docstring") OT::Dirichlet
"Dirichlet distribution.

Available constructors:
    Dirichlet(*theta=[1.0, 1.0]*)

Parameters
----------
theta : sequence of float, :math:`\\\\theta_i > 0, i = 1, \\\\ldots, n+1`
        theta must be at least bidimensional.

Notes
-----
Its probability density function is defined as:

.. math::

    f_{\\\\vect{X}}(\\\\vect{x}) = \\\\frac{\\\\Gamma(|\\\\vect{\\\\theta}|_1)}
                                  {\\\\prod_{j=1}^{n + 1} \\\\Gamma(\\\\theta_j)}
                             \\\\left[1 - \\\\sum_{j=1}^{n} x_j
                                   \\\\right]^{\\\\theta_{n+1} - 1}
                             \\\\prod_{j=1}^n x_j^{\\\\theta_j - 1},
                             \\\\quad \\\\vect{x} \\\\in \\\\Delta(\\\\vect{X})

with :math:`\\\\Delta(\\\\vect{X}) = \\\\{ \\\\vect{x} \\\\in \\\\Rset^n : x_i \\\\geq 0, \\\\sum_{i=1}^n x_i \\\\leq 1, i = 1, \\\\ldots, n \\\\}`
and :math:`\\\\theta_i > 0, i = 1, \\\\ldots, n+1` and where :math:`|\\\\vect{\\\\theta}|_1 = \\\\sum_{i=1}^{n+1} \\\\theta_i`.

Its first moments are:

.. math::
    :nowrap:

    \\\\begin{eqnarray*}
        \\\\Expect{\\\\vect{X}} & = & \\\\Tr{(\\\\theta_i/|\\\\vect{\\\\theta}|_1,
                                     \\\\quad i = 1, \\\\ldots, n)} \\\\\\\\
        \\\\Cov{\\\\vect{X}} & = & \\\\left[- \\\\frac{\\\\theta_i \\\\theta_j}
                                          {|\\\\vect{\\\\theta}|_1^2
                                           (|\\\\vect{\\\\theta}|_1+1)},
                                   \\\\quad i,j = 1, \\\\ldots, n \\\\right]
    \\\\end{eqnarray*}

.. warning::
    The present implementation does not model the :math:`n+1`-th component of
    the Dirichlet distribution as it is fixed:

    .. math::

        X_{n + 1} = 1 - \\\\sum_{i=1}^{n} X_i

See Also
--------
Multinomial

Examples
--------
Create a distribution:

>>> import openturns as ot
>>> distribution = ot.Dirichlet([1., 1., 1.])

Draw a sample:

>>> sample = distribution.getSample(10)"

// ---------------------------------------------------------------------

%feature("docstring") OT::Dirichlet::getTheta
"Accessor to the distribution's vector parameter.

Returns
-------
theta : float, :class:`~openturns.NumericalPoint`"

// ---------------------------------------------------------------------

%feature("docstring") OT::Dirichlet::setTheta
"Accessor to the distribution's vector parameter.

Parameters
----------
theta : float, sequence of float, :math:`\\\\theta_i > 0, i = 1, \\\\ldots, n+1`"