/usr/include/openturns/swig/DistributionImplementation_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 | %define OT_Distribution_doc
"Base class for probability distributions.
Notes
-----
In OpenTURNS a :class:`~openturns.Distribution` maps the concept of *probability distribution*."
%enddef
%feature("docstring") OT::DistributionImplementation
OT_Distribution_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeCDF_doc
"Compute the cumulative distribution function.
Parameters
----------
X : sequence of float, 2-d sequence of float
CDF input(s).
Returns
-------
F : float, :class:`~openturns.NumericalPoint`
CDF value(s) at input(s) `X`.
Notes
-----
The cumulative distribution function is defined as:
.. math::
F_{\\\\vect{X}}(\\\\vect{x}) = \\\\Prob{\\\\bigcap_{i=1}^n X_i \\\\leq x_i},
\\\\quad \\\\vect{x} \\\\in \\\\supp{\\\\vect{X}}"
%enddef
%feature("docstring") OT::DistributionImplementation::computeCDF
OT_Distribution_computeCDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeCDFGradient_doc
"Compute the gradient of the cumulative distribution function.
Parameters
----------
X : sequence of float
CDF input.
Returns
-------
dFdtheta : :class:`~openturns.NumericalPoint`
Partial derivatives of the CDF with respect to the distribution
parameters at input `X`."
%enddef
%feature("docstring") OT::DistributionImplementation::computeCDFGradient
OT_Distribution_computeCDFGradient_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeCharacteristicFunction_doc
"Compute the characteristic function.
Parameters
----------
t : float
Characteristic function input.
Returns
-------
phi : complex
Characteristic function value at input `t`.
Notes
-----
The characteristic function is defined as:
.. math::
\\\\phi_X(t) = \\\\mathbb{E}\\\\left[\\\\exp(- i t X)\\\\right],
\\\\quad t \\\\in \\\\Rset
OpenTURNS features a generic implementation of the characteristic function for
all its univariate distributions (both continuous and discrete). This default
implementation might be time consuming, especially as the modulus of `t` gets
high. Only some univariate distributions benefit from dedicated more efficient
implementations."
%enddef
%feature("docstring") OT::DistributionImplementation::computeCharacteristicFunction
OT_Distribution_computeCharacteristicFunction_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeComplementaryCDF_doc
"Compute the complementary cumulative distribution function.
Parameters
----------
X : sequence of float, 2-d sequence of float
Complementary CDF input(s).
Returns
-------
C : float, :class:`~openturns.NumericalPoint`
Complementary CDF value(s) at input(s) `X`.
Notes
-----
The complementary cumulative distribution function.
.. math::
1 - F_{\\\\vect{X}}(\\\\vect{x}) = 1 - \\\\Prob{\\\\bigcap_{i=1}^n X_i \\\\leq x_i}, \\\\quad \\\\vect{x} \\\\in \\\\supp{\\\\vect{X}}
.. warning::
This is not the survival function (except for 1-dimensional
distributions).
See Also
--------
computeSurvivalFunction"
%enddef
%feature("docstring") OT::DistributionImplementation::computeComplementaryCDF
OT_Distribution_computeComplementaryCDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeConditionalCDF_doc
"Compute the conditional cumulative distribution function.
Parameters
----------
Xn : float
Conditional CDF input (last component).
Xcond : sequence of float with dimension :math:`n-1`
Conditionning values for the other components.
Returns
-------
F : float
Conditional CDF value at input `Xn`, `Xcond`.
Notes
-----
The conditional cumulative distribution function of the last component with
respect to the other fixed components is defined as follows:
.. math::
F_{X_n \\\\mid X_1, \\\\ldots, X_{n - 1}}(x_n) =
\\\\Prob{X_n \\\\leq x_n \\\\mid X_1=x_1, \\\\ldots, X_{n-1}=x_{n-1}},
\\\\quad x_n \\\\in \\\\supp{X_n}"
%enddef
%feature("docstring") OT::DistributionImplementation::computeConditionalCDF
OT_Distribution_computeConditionalCDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeConditionalDDF_doc
"Compute the conditional derivative density function of the last component.
With respect to the other fixed components.
Parameters
----------
Xn : float
Conditional DDF input (last component).
Xcond : sequence of float with dimension :math:`n-1`
Conditionning values for the other components.
Returns
-------
d : float
Conditional DDF value at input `Xn`, `Xcond`.
See Also
--------
computeDDF, computeConditionalCDF"
%enddef
%feature("docstring") OT::DistributionImplementation::computeConditionalDDF
OT_Distribution_computeConditionalDDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeConditionalPDF_doc
"Compute the conditional probability density function.
Conditional PDF of the last component with respect to the other fixed components.
Parameters
----------
Xn : float
Conditional PDF input (last component).
Xcond : sequence of float with dimension :math:`n-1`
Conditionning values for the other components.
Returns
-------
f : float
Conditional PDF value at input `Xn`, `Xcond`.
See Also
--------
computePDF, computeConditionalCDF"
%enddef
%feature("docstring") OT::DistributionImplementation::computeConditionalPDF
OT_Distribution_computeConditionalPDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeConditionalQuantile_doc
"Compute the conditional quantile function of the last component.
Conditional quantile with respect to the other fixed components.
Parameters
----------
p : float, :math:`0 < p < 1`
Conditional quantile function input.
Xcond : sequence of float with dimension :math:`n-1`
Conditionning values for the other components.
Returns
-------
X1 : float
Conditional quantile at input `p`, `Xcond`.
See Also
--------
computeQuantile, computeConditionalCDF"
%enddef
%feature("docstring") OT::DistributionImplementation::computeConditionalQuantile
OT_Distribution_computeConditionalQuantile_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeDDF_doc
"Compute the derivative density function.
Parameters
----------
X : sequence of float, 2-d sequence of float
PDF input(s).
Returns
-------
d : :class:`~openturns.NumericalPoint`, :class:`~openturns.NumericalSample`
DDF value(s) at input(s) `X`.
Notes
-----
The derivative density function is the gradient of the probability density
function with respect to :math:`\\\\vect{x}`:
.. math::
\\\\vect{\\\\nabla}_{\\\\vect{x}} f_{\\\\vect{X}}(\\\\vect{x}) =
\\\\Tr{\\\\left(\\\\frac{\\\\partial f_{\\\\vect{X}}(\\\\vect{x})}{\\\\partial x_i},
\\\\quad i = 1, \\\\ldots, n\\\\right)},
\\\\quad \\\\vect{x} \\\\in \\\\supp{\\\\vect{X}}"
%enddef
%feature("docstring") OT::DistributionImplementation::computeDDF
OT_Distribution_computeDDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeDensityGenerator_doc
"Compute the probability density function of the characteristic generator.
PDF of the characteristic generator of the elliptical distribution.
Parameters
----------
beta2 : float
Density generator input.
Returns
-------
p : float
Density generator value at input `X`.
Notes
-----
This is the function :math:`\\\\phi` such that the probability density function
rewrites:
.. math::
f_{\\\\vect{X}}(\\\\vect{x}) =
\\\\phi\\\\left(\\\\Tr{\\\\left(\\\\vect{x} - \\\\vect{\\\\mu}\\\\right)}
\\\\mat{\\\\Sigma}^{-1}
\\\\left(\\\\vect{x} - \\\\vect{\\\\mu}\\\\right)
\\\\right),
\\\\quad \\\\vect{x} \\\\in \\\\supp{\\\\vect{X}}
This function only exists for elliptical distributions.
See Also
--------
isElliptical, computePDF"
%enddef
%feature("docstring") OT::DistributionImplementation::computeDensityGenerator
OT_Distribution_computeDensityGenerator_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeDensityGeneratorDerivative_doc
"Compute the first-order derivative of the probability density function.
PDF of the characteristic generator of the elliptical distribution.
Parameters
----------
beta2 : float
Density generator input.
Returns
-------
p : float
Density generator first-order derivative value at input `X`.
Notes
-----
This function only exists for elliptical distributions.
See Also
--------
isElliptical, computeDensityGenerator"
%enddef
%feature("docstring") OT::DistributionImplementation::computeDensityGeneratorDerivative
OT_Distribution_computeDensityGeneratorDerivative_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeDensityGeneratorSecondDerivative_doc
"Compute the second-order derivative of the probability density function.
PDF of the characteristic generator of the elliptical distribution.
Parameters
----------
beta2 : float
Density generator input.
Returns
-------
p : float
Density generator second-order derivative value at input `X`.
Notes
-----
This function only exists for elliptical distributions.
See Also
--------
isElliptical, computeDensityGenerator"
%enddef
%feature("docstring") OT::DistributionImplementation::computeDensityGeneratorSecondDerivative
OT_Distribution_computeDensityGeneratorSecondDerivative_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeGeneratingFunction_doc
"Compute the probability-generating function.
Parameters
----------
z : float or complex
Probability-generating function input.
Returns
-------
g : float
Probability-generating function value at input `X`.
Notes
-----
The probability-generating function is defined as follows:
.. math::
G_X(z) = \\\\Expect{z^X}, \\\\quad z \\\\in \\\\Cset
This function only exists for discrete distributions. OpenTURNS implements
this method for univariate distributions only.
See Also
--------
isDiscrete"
%enddef
%feature("docstring") OT::DistributionImplementation::computeGeneratingFunction
OT_Distribution_computeGeneratingFunction_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeLogCharacteristicFunction_doc
"Compute the logarithm of the characteristic function.
Parameters
----------
t : float
Characteristic function input.
Returns
-------
phi : complex
Logarithm of the characteristic function value at input `t`.
Notes
-----
OpenTURNS features a generic implementation of the characteristic function for
all its univariate distributions (both continuous and discrete). This default
implementation might be time consuming, especially as the modulus of `t` gets
high. Only some univariate distributions benefit from dedicated more efficient
implementations.
See Also
--------
computeCharacteristicFunction"
%enddef
%feature("docstring") OT::DistributionImplementation::computeLogCharacteristicFunction
OT_Distribution_computeLogCharacteristicFunction_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeLogGeneratingFunction_doc
"Compute the logarithm of the probability-generating function.
Parameters
----------
z : float or complex
Probability-generating function input.
Returns
-------
lg : float
Logarithm of the probability-generating function value at input `X`.
Notes
-----
This function only exists for discrete distributions. OpenTURNS implements
this method for univariate distributions only.
See Also
--------
isDiscrete, computeGeneratingFunction"
%enddef
%feature("docstring") OT::DistributionImplementation::computeLogGeneratingFunction
OT_Distribution_computeLogGeneratingFunction_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeLogPDF_doc
"Compute the logarithm of the probability density function.
Parameters
----------
X : sequence of float, 2-d sequence of float
PDF input(s).
Returns
-------
f : float, :class:`~openturns.NumericalPoint`
Logarithm of the PDF value(s) at input(s) `X`."
%enddef
%feature("docstring") OT::DistributionImplementation::computeLogPDF
OT_Distribution_computeLogPDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeMinimumVolumeInterval_doc
"Compute the minimum volume interval of a given probability content.
Univariate case only.
Parameters
----------
prob : float
Probability
Returns
-------
interval : :class:`~openturns.Interval`
Minimum volume interval of a given probability content in the univariate case."
%enddef
%feature("docstring") OT::DistributionImplementation::computeMinimumVolumeInterval
OT_Distribution_computeMinimumVolumeInterval_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computePDF_doc
"Compute the probability density function.
Parameters
----------
X : sequence of float, 2-d sequence of float
PDF input(s).
Returns
-------
f : float, :class:`~openturns.NumericalPoint`
PDF value(s) at input(s) `X`.
Notes
-----
The probability density function is defined as follows:
.. math::
f_{\\\\vect{X}}(\\\\vect{x}) = \\\\frac{\\\\partial^n F_{\\\\vect{X}}(\\\\vect{x})}
{\\\\prod_{i=1}^n \\\\partial x_i},
\\\\quad \\\\vect{x} \\\\in \\\\supp{\\\\vect{X}}"
%enddef
%feature("docstring") OT::DistributionImplementation::computePDF
OT_Distribution_computePDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computePDFGradient_doc
"Compute the gradient of the probability density function.
Parameters
----------
X : sequence of float
PDF input.
Returns
-------
dfdtheta : :class:`~openturns.NumericalPoint`
Partial derivatives of the PDF with respect to the distribution
parameters at input `X`."
%enddef
%feature("docstring") OT::DistributionImplementation::computePDFGradient
OT_Distribution_computePDFGradient_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeProbability_doc
"Compute the interval probability.
Parameters
----------
interval : :class:`~openturns.Interval`
An interval, possibly multivariate.
Returns
-------
P : float
Interval probability.
Notes
-----
This computes the probability that the random vector :math:`\\\\vect{X}` lies in
the hyper-rectangular region formed by the vectors :math:`\\\\vect{a}` and
:math:`\\\\vect{b}`:
.. math::
\\\\Prob{\\\\bigcap\\\\limits_{i=1}^n a_i < X_i \\\\leq b_i} =
\\\\sum\\\\limits_{\\\\vect{c}} (-1)^{n(\\\\vect{c})}
F_{\\\\vect{X}}\\\\left(\\\\vect{c}\\\\right)
where the sum runs over the :math:`2^n` vectors such that
:math:`\\\\vect{c} = \\\\Tr{(c_i, i = 1, \\\\ldots, n)}` with :math:`c_i \\\\in [a_i, b_i]`,
and :math:`n(\\\\vect{c})` is the number of components in
:math:`\\\\vect{c}` such that :math:`c_i = a_i`."
%enddef
%feature("docstring") OT::DistributionImplementation::computeProbability
OT_Distribution_computeProbability_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeQuantile_doc
"Compute the quantile function.
Parameters
----------
p : float, :math:`0 < p < 1`
Quantile function input (a probability).
Returns
-------
X : :class:`~openturns.NumericalPoint`
Quantile at probability level `p`.
Notes
-----
The quantile function is also known as the inverse cumulative distribution
function:
.. math::
Q_{\\\\vect{X}}(p) = F_{\\\\vect{X}}^{-1}(p),
\\\\quad p \\\\in [0; 1]"
%enddef
%feature("docstring") OT::DistributionImplementation::computeQuantile
OT_Distribution_computeQuantile_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeRadialDistributionCDF_doc
"Compute the cumulative distribution function of the squared radius.
For the underlying standard spherical distribution (for elliptical
distributions only).
Parameters
----------
r2 : float, :math:`0 \\\\leq r^2`
Squared radius.
Returns
-------
F : float
CDF value at input `r2`.
Notes
-----
This is the CDF of the sum of the squared independent, standard, identically
distributed components:
.. math::
R^2 = \\\\sqrt{\\\\sum\\\\limits_{i=1}^n U_i^2}"
%enddef
%feature("docstring") OT::DistributionImplementation::computeRadialDistributionCDF
OT_Distribution_computeRadialDistributionCDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeScalarQuantile_doc
"Compute the quantile function for univariate distributions.
Parameters
----------
p : float, :math:`0 < p < 1`
Quantile function input (a probability).
Returns
-------
X : float
Quantile at probability level `p`.
Notes
-----
The quantile function is also known as the inverse cumulative distribution
function:
.. math::
Q_X(p) = F_X^{-1}(p), \\\\quad p \\\\in [0; 1]
See Also
--------
computeQuantile"
%enddef
%feature("docstring") OT::DistributionImplementation::computeScalarQuantile
OT_Distribution_computeScalarQuantile_doc
// ---------------------------------------------------------------------
%define OT_Distribution_computeSurvivalFunction_doc
"Compute the survival function.
Parameters
----------
X : sequence of float, 2-d sequence of float
Survival function input(s).
Returns
-------
S : float, :class:`~openturns.NumericalPoint`
Survival function value(s) at input(s) `X`.
Notes
-----
The survival function is defined as follows:
.. math::
S_{\\\\vect{X}}(\\\\vect{x}) = \\\\Prob{\\\\bigcap_{i=1}^n X_i > x_i},
\\\\quad \\\\vect{x} \\\\in \\\\supp{\\\\vect{X}}
.. warning::
This is not the complementary cumulative distribution function (except for
1-dimensional distributions).
See Also
--------
computeComplementaryCDF"
%enddef
%feature("docstring") OT::DistributionImplementation::computeSurvivalFunction
OT_Distribution_computeSurvivalFunction_doc
// ---------------------------------------------------------------------
%define OT_Distribution_drawCDF_doc
"Draw the cumulative distribution function.
Available constructors:
drawCDF(*x_min, x_max, pointNumber*)
drawCDF(*lowerCorner, upperCorner, pointNbrInd*)
drawCDF(*lowerCorner, upperCorner*)
Parameters
----------
x_min : float, optional
The min-value of the mesh of the x-axis.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMin` from the :class:`~openturns.ResourceMap`.
x_max : float, optional, :math:`x_{\\\\max} > x_{\\\\min}`
The max-value of the mesh of the y-axis.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMax` from the :class:`~openturns.ResourceMap`.
pointNumber : int
The number of points that is used for meshing each axis.
Defaults uses `DistributionImplementation-DefaultPointNumber` from the
:class:`~openturns.ResourceMap`.
lowerCorner : sequence of float, of dimension 2, optional
The lower corner :math:`[x_{min}, y_{min}]`.
upperCorner : sequence of float, of dimension 2, optional
The upper corner :math:`[x_{max}, y_{max}]`.
pointNbrInd : :class:`~openturns.Indices`, of dimension 2
Number of points that is used for meshing each axis.
Returns
-------
graph : :class:`~openturns.Graph`
A graphical representation of the CDF.
Notes
-----
Only valid for univariate and bivariate distributions.
See Also
--------
computeCDF, viewer.View, ResourceMap
Examples
--------
View the CDF of a univariate distribution:
>>> import openturns as ot
>>> dist = ot.Normal()
>>> graph = dist.drawCDF()
>>> graph.setLegends(['normal cdf'])
View the iso-lines CDF of a bivariate distribution:
>>> import openturns as ot
>>> dist = ot.Normal(2)
>>> graph2 = dist.drawCDF()
>>> graph2.setLegends(['iso- normal cdf'])
>>> graph3 = dist.drawCDF([-10, -5],[5, 10], [511, 511])
"
%enddef
%feature("docstring") OT::DistributionImplementation::drawCDF
OT_Distribution_drawCDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_drawMarginal1DCDF_doc
"Draw the cumulative distribution function of a margin.
Parameters
----------
i : int, :math:`1 \\\\leq i \\\\leq n`
The index of the margin of interest.
x_min : float
The starting value that is used for meshing the x-axis.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMin` from the :class:`~openturns.ResourceMap`.
x_max : float, :math:`x_{\\\\max} > x_{\\\\min}`
The ending value that is used for meshing the x-axis.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMax` from the :class:`~openturns.ResourceMap`.
n_points : int
The number of points that is used for meshing the x-axis.
Defaults uses `DistributionImplementation-DefaultPointNumber` from the
:class:`~openturns.ResourceMap`.
Returns
-------
graph : :class:`~openturns.Graph`
A graphical representation of the requested margin's CDF.
See Also
--------
computeCDF, getMarginal, viewer.View, ResourceMap
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> distribution = ot.Normal(10)
>>> graph = distribution.drawMarginal1DCDF(2, -6., 6., 100)
>>> view = View(graph)
>>> view.show()"
%enddef
%feature("docstring") OT::DistributionImplementation::drawMarginal1DCDF
OT_Distribution_drawMarginal1DCDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_drawMarginal1DPDF_doc
"Draw the probability density function of a margin.
Parameters
----------
i : int, :math:`1 \\\\leq i \\\\leq n`
The index of the margin of interest.
x_min : float
The starting value that is used for meshing the x-axis.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMin` from the :class:`~openturns.ResourceMap`.
x_max : float, :math:`x_{\\\\max} > x_{\\\\min}`
The ending value that is used for meshing the x-axis.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMax` from the :class:`~openturns.ResourceMap`.
n_points : int
The number of points that is used for meshing the x-axis.
Defaults uses `DistributionImplementation-DefaultPointNumber` from the
:class:`~openturns.ResourceMap`.
Returns
-------
graph : :class:`~openturns.Graph`
A graphical representation of the requested margin's PDF.
See Also
--------
computePDF, getMarginal, viewer.View, ResourceMap
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> distribution = ot.Normal(10)
>>> graph = distribution.drawMarginal1DPDF(2, -6., 6., 100)
>>> view = View(graph)
>>> view.show()"
%enddef
%feature("docstring") OT::DistributionImplementation::drawMarginal1DPDF
OT_Distribution_drawMarginal1DPDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_drawMarginal2DCDF_doc
"Draw the cumulative distribution function of a couple of margins.
Parameters
----------
i : int, :math:`1 \\\\leq i \\\\leq n`
The index of the first margin of interest.
j : int, :math:`1 \\\\leq i \\\\neq j \\\\leq n`
The index of the second margin of interest.
x_min : list of 2 floats
The starting values that are used for meshing the x- and y- axes.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMin` from the :class:`~openturns.ResourceMap`.
x_max : list of 2 floats, :math:`x_{\\\\max} > x_{\\\\min}`
The ending values that are used for meshing the x- and y- axes.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMax` from the :class:`~openturns.ResourceMap`.
n_points : list of 2 ints
The number of points that are used for meshing the x- and y- axes.
Defaults uses `DistributionImplementation-DefaultPointNumber` from the
:class:`~openturns.ResourceMap`.
Returns
-------
graph : :class:`~openturns.Graph`
A graphical representation of the marginal CDF of the requested couple of
margins.
See Also
--------
computeCDF, getMarginal, viewer.View, ResourceMap
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> distribution = ot.Normal(10)
>>> graph = distribution.drawMarginal2DCDF(2, 3, [-6.] * 2, [6.] * 2, [100] * 2)
>>> view = View(graph)
>>> view.show()"
%enddef
%feature("docstring") OT::DistributionImplementation::drawMarginal2DCDF
OT_Distribution_drawMarginal2DCDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_drawMarginal2DPDF_doc
"Draw the probability density function of a couple of margins.
Parameters
----------
i : int, :math:`1 \\\\leq i \\\\leq n`
The index of the first margin of interest.
j : int, :math:`1 \\\\leq i \\\\neq j \\\\leq n`
The index of the second margin of interest.
x_min : list of 2 floats
The starting values that are used for meshing the x- and y- axes.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMin` from the :class:`~openturns.ResourceMap`.
x_max : list of 2 floats, :math:`x_{\\\\max} > x_{\\\\min}`
The ending values that are used for meshing the x- and y- axes.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMax` from the :class:`~openturns.ResourceMap`.
n_points : list of 2 ints
The number of points that are used for meshing the x- and y- axes.
Defaults uses `DistributionImplementation-DefaultPointNumber` from the
:class:`~openturns.ResourceMap`.
Returns
-------
graph : :class:`~openturns.Graph`
A graphical representation of the marginal PDF of the requested couple of
margins.
See Also
--------
computePDF, getMarginal, viewer.View, ResourceMap
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> distribution = ot.Normal(10)
>>> graph = distribution.drawMarginal2DPDF(2, 3, [-6.] * 2, [6.] * 2, [100] * 2)
>>> view = View(graph)
>>> view.show()"
%enddef
%feature("docstring") OT::DistributionImplementation::drawMarginal2DPDF
OT_Distribution_drawMarginal2DPDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_drawPDF_doc
"Draw the graph or of iso-lines of probability density function.
Available constructors:
drawPDF(*x_min, x_max, pointNumber*)
drawPDF(*lowerCorner, upperCorner, pointNbrInd*)
drawPDF(*lowerCorner, upperCorner*)
Parameters
----------
x_min : float, optional
The min-value of the mesh of the x-axis.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMin` from the :class:`~openturns.ResourceMap`.
x_max : float, optional, :math:`x_{\\\\max} > x_{\\\\min}`
The max-value of the mesh of the y-axis.
Defaults uses the quantile associated to the probability level
`DistributionImplementation-QMax` from the :class:`~openturns.ResourceMap`.
pointNumber : int
The number of points that is used for meshing each axis.
Defaults uses `DistributionImplementation-DefaultPointNumber` from the
:class:`~openturns.ResourceMap`.
lowerCorner : sequence of float, of dimension 2, optional
The lower corner :math:`[x_{min}, y_{min}]`.
upperCorner : sequence of float, of dimension 2, optional
The upper corner :math:`[x_{max}, y_{max}]`.
pointNbrInd : :class:`~openturns.Indices`, of dimension 2
Number of points that is used for meshing each axis.
Returns
-------
graph : :class:`~openturns.Graph`
A graphical representation of the PDF or its iso_lines.
Notes
-----
Only valid for univariate and bivariate distributions.
See Also
--------
computePDF, viewer.View, ResourceMap
Examples
--------
View the PDF of a univariate distribution:
>>> import openturns as ot
>>> dist = ot.Normal()
>>> graph = dist.drawPDF()
>>> graph.setLegends(['normal pdf'])
View the iso-lines PDF of a bivariate distribution:
>>> import openturns as ot
>>> dist = ot.Normal(2)
>>> graph2 = dist.drawPDF()
>>> graph2.setLegends(['iso- normal pdf'])
>>> graph3 = dist.drawPDF([-10, -5],[5, 10], [511, 511])
"
%enddef
%feature("docstring") OT::DistributionImplementation::drawPDF
OT_Distribution_drawPDF_doc
// ---------------------------------------------------------------------
%define OT_Distribution_drawQuantile_doc
"Draw the quantile function.
Parameters
----------
q_min : float, in :math:`[0,1]`
The min value of the mesh of the x-axis.
q_max : float, in :math:`[0,1]`
The max value of the mesh of the x-axis.
n_points : int, optional
The number of points that is used for meshing the quantile curve.
Defaults uses `DistributionImplementation-DefaultPointNumber` from the
:class:`~openturns.ResourceMap`.
Returns
-------
graph : :class:`~openturns.Graph`
A graphical representation of the quantile function.
Notes
-----
This is implemented for univariate and bivariate distributions only.
In the case of bivariate distributions, defined by its CDF :math:`F` and its marginals :math:`(F_1, F_2)`, the quantile of order :math:`q` is the point :math:`(F_1(u),F_2(u))` defined by
.. math::
F(F_1(u), F_2(u)) = q
See Also
--------
computeQuantile, viewer.View, ResourceMap
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> distribution = ot.Normal()
>>> graph = distribution.drawQuantile()
>>> view = View(graph)
>>> view.show()
>>> distribution = ot.ComposedDistribution([ot.Normal(), ot.Exponential(1.0)], ot.ClaytonCopula(0.5))
>>> graph = distribution.drawQuantile()
>>> view = View(graph)
>>> view.show()"
%enddef
%feature("docstring") OT::DistributionImplementation::drawQuantile
OT_Distribution_drawQuantile_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getCDFEpsilon_doc
"Accessor to the CDF computation precision.
Returns
-------
CDFEpsilon : float
CDF computation precision."
%enddef
%feature("docstring") OT::DistributionImplementation::getCDFEpsilon
OT_Distribution_getCDFEpsilon_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getCenteredMoment_doc
"Accessor to the componentwise centered moments.
Parameters
----------
k : int
The centered moment's order.
Returns
-------
m : :class:`~openturns.NumericalPoint`
Componentwise centered moment of order :math:`k`.
Notes
-----
Centered moments are centered with respect to the first-order moment:
.. math::
\\\\vect{m}^{(k)}_0 = \\\\Tr{\\\\left(\\\\Expect{\\\\left(X_i - \\\\mu_i\\\\right)^k},
\\\\quad i = 1, \\\\ldots, n\\\\right)}
See Also
--------
getMoment"
%enddef
%feature("docstring") OT::DistributionImplementation::getCenteredMoment
OT_Distribution_getCenteredMoment_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getCholesky_doc
"Accessor to the Cholesky factor of the covariance matrix.
Returns
-------
L : :class:`~openturns.SquareMatrix`
Cholesky factor of the covariance matrix.
See Also
--------
getCovariance"
%enddef
%feature("docstring") OT::DistributionImplementation::getCholesky
OT_Distribution_getCholesky_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getCopula_doc
"Accessor to the distribution's copula.
Returns
-------
C : :class:`~openturns.Distribution`
Distribution's copula.
See Also
--------
ComposedDistribution"
%enddef
%feature("docstring") OT::DistributionImplementation::getCopula
OT_Distribution_getCopula_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getCorrelation_doc
"**(ditch me?)**"
%enddef
%feature("docstring") OT::DistributionImplementation::getCorrelation
OT_Distribution_getCorrelation_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getCovariance_doc
"Accessor to the covariance matrix.
Returns
-------
Sigma : :class:`~openturns.CovarianceMatrix`
Covariance matrix.
Notes
-----
The covariance is the second-order standard moment. It is defined as:
.. math::
\\\\mat{\\\\Sigma} & = \\\\Cov{\\\\vect{X}} \\\\\\\\
& = \\\\Expect{\\\\left(\\\\vect{X} - \\\\vect{\\\\mu}\\\\right)
\\\\Tr{\\\\left(\\\\vect{X} - \\\\vect{\\\\mu}\\\\right)}}"
%enddef
%feature("docstring") OT::DistributionImplementation::getCovariance
OT_Distribution_getCovariance_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getDescription_doc
"Accessor to the componentwise description.
Returns
-------
description : :class:`~openturns.Description`
Description of the distribution's components.
See Also
--------
setDescription"
%enddef
%feature("docstring") OT::DistributionImplementation::getDescription
OT_Distribution_getDescription_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getDimension_doc
"Accessor to the distribution's dimension.
Returns
-------
n : int
The number of components in the distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::getDimension
OT_Distribution_getDimension_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getDispersionIndicator_doc
"**(ditch me?)**"
%enddef
%feature("docstring") OT::DistributionImplementation::getDispersionIndicator
OT_Distribution_getDispersionIndicator_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getInverseCholesky_doc
"Accessor to the inverse Cholesky factor of the covariance matrix.
Returns
-------
Linv : :class:`~openturns.SquareMatrix`
Inverse Cholesky factor of the covariance matrix.
See also
--------
getCholesky"
%enddef
%feature("docstring") OT::DistributionImplementation::getInverseCholesky
OT_Distribution_getInverseCholesky_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getInverseIsoProbabilisticTransformation_doc
"Accessor to the inverse iso-probabilistic transformation.
Returns
-------
Tinv : :class:`~openturns.NumericalMathFunction`
Inverse iso-probabilistic transformation.
Notes
-----
The inverse iso-probabilistic transformation is defined as follows:
.. math::
T^{-1}: \\\\left|\\\\begin{array}{rcl}
\\\\Rset^n & \\\\rightarrow & \\\\supp{\\\\vect{X}} \\\\\\\\
\\\\vect{u} & \\\\mapsto & \\\\vect{x}
\\\\end{array}\\\\right.
See also
--------
getIsoProbabilisticTransformation"
%enddef
%feature("docstring") OT::DistributionImplementation::getInverseIsoProbabilisticTransformation
OT_Distribution_getInverseIsoProbabilisticTransformation_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getIsoProbabilisticTransformation_doc
"Accessor to the iso-probabilistic transformation.
Returns
-------
T : :class:`~openturns.NumericalMathFunction`
Iso-probabilistic transformation.
Notes
-----
The iso-probabilistic transformation is defined as follows:
.. math::
T: \\\\left|\\\\begin{array}{rcl}
\\\\supp{\\\\vect{X}} & \\\\rightarrow & \\\\Rset^n \\\\\\\\
\\\\vect{x} & \\\\mapsto & \\\\vect{u}
\\\\end{array}\\\\right.
**An** iso-probabilistic transformation is a *diffeomorphism* [#diff]_ from
:math:`\\\\supp{\\\\vect{X}}` to :math:`\\\\Rset^n` that maps realizations
:math:`\\\\vect{x}` of a random vector :math:`\\\\vect{X}` into realizations
:math:`\\\\vect{y}` of another random vector :math:`\\\\vect{Y}` while
preserving probabilities. It is hence defined so that it satisfies:
.. math::
:nowrap:
\\\\begin{eqnarray*}
\\\\Prob{\\\\bigcap_{i=1}^n X_i \\\\leq x_i}
& = & \\\\Prob{\\\\bigcap_{i=1}^n Y_i \\\\leq y_i} \\\\\\\\
F_{\\\\vect{X}}(\\\\vect{x})
& = & F_{\\\\vect{Y}}(\\\\vect{y})
\\\\end{eqnarray*}
**The present** implementation of the iso-probabilistic transformation maps
realizations :math:`\\\\vect{x}` into realizations :math:`\\\\vect{u}` of a
random vector :math:`\\\\vect{U}` with *spherical distribution* [#spherical]_.
To be more specific:
- if the distribution is elliptical, then the transformed distribution is
simply made spherical using the **Nataf (linear) transformation**
[Nataf1962]_, [Lebrun2009a]_.
- if the distribution has an elliptical Copula, then the transformed
distribution is made spherical using the **generalized Nataf
transformation** [Lebrun2009b]_.
- otherwise, the transformed distribution is the standard multivariate
Normal distribution and is obtained by means of the **Rosenblatt
transformation** [Rosenblatt1952]_, [Lebrun2009c]_.
.. [#diff] A differentiable map :math:`f` is called a *diffeomorphism* if it
is a bijection and its inverse :math:`f^{-1}` is differentiable as well.
Hence, the iso-probabilistic transformation implements a gradient (and
even a Hessian).
.. [#spherical] A distribution is said to be *spherical* if is invariant by
rotation. Mathematically, :math:`\\\\vect{U}` has a spherical distribution
if:
.. math::
\\\\mat{R}\\\\,\\\\vect{U} \\\\sim \\\\vect{U},
\\\\quad \\\\forall \\\\mat{R} \\\\in \\\\cS\\\\cP_n(\\\\Rset)
See also
--------
getInverseIsoProbabilisticTransformation, isElliptical, hasEllipticalCopula"
%enddef
%feature("docstring") OT::DistributionImplementation::getIsoProbabilisticTransformation
OT_Distribution_getIsoProbabilisticTransformation_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getKendallTau_doc
"Accessor to the Kendall coefficients matrix.
Returns
-------
tau: :class:`~openturns.SquareMatrix`
Kendall coefficients matrix.
Notes
-----
The Kendall coefficients matrix is defined as:
.. math::
\\\\mat{\\\\tau} = \\\\Big[& \\\\Prob{X_i < x_i \\\\cap X_j < x_j
\\\\cup
X_i > x_i \\\\cap X_j > x_j} \\\\\\\\
& - \\\\Prob{X_i < x_i \\\\cap X_j > x_j
\\\\cup
X_i > x_i \\\\cap X_j < x_j},
\\\\quad i,j = 1, \\\\ldots, n\\\\Big]
See Also
--------
getSpearmanCorrelation"
%enddef
%feature("docstring") OT::DistributionImplementation::getKendallTau
OT_Distribution_getKendallTau_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getKurtosis_doc
"Accessor to the componentwise kurtosis.
Returns
-------
k : :class:`~openturns.NumericalPoint`
Componentwise kurtosis.
Notes
-----
The kurtosis is the fourth-order standard moment:
.. math::
\\\\vect{\\\\kappa} = \\\\Tr{\\\\left(\\\\Expect{\\\\left(\\\\frac{X_i - \\\\mu_i}
{\\\\sigma_i}\\\\right)^4},
\\\\quad i = 1, \\\\ldots, n\\\\right)}"
%enddef
%feature("docstring") OT::DistributionImplementation::getKurtosis
OT_Distribution_getKurtosis_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getLinearCorrelation_doc
"**(ditch me?)**"
%enddef
%feature("docstring") OT::DistributionImplementation::getLinearCorrelation
OT_Distribution_getLinearCorrelation_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getMarginal_doc
"Accessor to marginal distributions.
Parameters
----------
i : int or list of ints, :math:`1 \\\\leq i \\\\leq n`
Component(s) indice(s).
Returns
-------
distribution : :class:`~openturns.Distribution`
The marginal distribution of the selected component(s)."
%enddef
%feature("docstring") OT::DistributionImplementation::getMarginal
OT_Distribution_getMarginal_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getMean_doc
"Accessor to the mean.
Returns
-------
k : :class:`~openturns.NumericalPoint`
Mean.
Notes
-----
The mean is the first-order moment:
.. math::
\\\\vect{\\\\mu} = \\\\Tr{\\\\left(\\\\Expect{X_i}, \\\\quad i = 1, \\\\ldots, n\\\\right)}"
%enddef
%feature("docstring") OT::DistributionImplementation::getMean
OT_Distribution_getMean_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getMoment_doc
"Accessor to the componentwise moments.
Parameters
----------
k : int
The moment's order.
Returns
-------
m : :class:`~openturns.NumericalPoint`
Componentwise moment of order `k`.
Notes
-----
The componentwise moment of order :math:`k` is defined as:
.. math::
\\\\vect{m}^{(k)} = \\\\Tr{\\\\left(\\\\Expect{X_i^k}, \\\\quad i = 1, \\\\ldots, n\\\\right)}"
%enddef
%feature("docstring") OT::DistributionImplementation::getMoment
OT_Distribution_getMoment_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getPDFEpsilon_doc
"Accessor to the PDF computation precision.
Returns
-------
PDFEpsilon : float
PDF computation precision."
%enddef
%feature("docstring") OT::DistributionImplementation::getPDFEpsilon
OT_Distribution_getPDFEpsilon_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getParametersCollection_doc
"Accessor to the distribution's parameters.
Returns
-------
parameters : :class:`~openturns.NumericalPointWithDescription`
Dictionary-like object with parameters names and values."
%enddef
%feature("docstring") OT::DistributionImplementation::getParametersCollection
OT_Distribution_getParametersCollection_doc
// ---------------------------------------------------------------------
%define OT_Distribution_setParameter_doc
"Accessor to the distribution's parameter.
Parameters
----------
parameter : sequence of float
Parameter values."
%enddef
%feature("docstring") OT::DistributionImplementation::setParameter
OT_Distribution_setParameter_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getParameter_doc
"Accessor to the distribution's parameter.
Returns
-------
parameter : :class:`~openturns.NumericalPoint`
Parameter values."
%enddef
%feature("docstring") OT::DistributionImplementation::getParameter
OT_Distribution_getParameter_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getParameterDescription_doc
"Accessor to the distribution's parameter description.
Returns
-------
description : :class:`~openturns.Description`
Parameter names."
%enddef
%feature("docstring") OT::DistributionImplementation::getParameterDescription
OT_Distribution_getParameterDescription_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getParameterDimension_doc
"Accessor to the number of parameters in the distribution.
Returns
-------
n_parameters : int
Number of parameters in the distribution.
See Also
--------
getParametersCollection"
%enddef
%feature("docstring") OT::DistributionImplementation::getParameterDimension
OT_Distribution_getParameterDimension_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getPearsonCorrelation_doc
"Accessor to the Pearson correlation matrix.
Returns
-------
R : :class:`~openturns.CorrelationMatrix`
Pearson's correlation matrix.
See Also
--------
getCovariance
Notes
-----
Pearson's correlation is defined as the normalized covariance matrix:
.. math::
\\\\mat{\\\\rho} & = \\\\left[\\\\frac{\\\\Cov{X_i, X_j}}{\\\\sqrt{\\\\Var{X_i}\\\\Var{X_j}}},
\\\\quad i,j = 1, \\\\ldots, n\\\\right] \\\\\\\\
& = \\\\left[\\\\frac{\\\\Sigma_{i,j}}{\\\\sqrt{\\\\Sigma_{i,i}\\\\Sigma_{j,j}}},
\\\\quad i,j = 1, \\\\ldots, n\\\\right]"
%enddef
%feature("docstring") OT::DistributionImplementation::getPearsonCorrelation
OT_Distribution_getPearsonCorrelation_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getPositionIndicator_doc
"**(ditch me?)**"
%enddef
%feature("docstring") OT::DistributionImplementation::getPositionIndicator
OT_Distribution_getPositionIndicator_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getRange_doc
"Accessor to the range of the distribution.
Returns
-------
range : :class:`~openturns.Interval`
Distribution's range.
Notes
-----
The *mathematical* range is the smallest closed interval outside of which the
PDF is zero. The *numerical* range is the interval outside of which the PDF is
rounded to zero in double precision.
See Also
--------
getSupport"
%enddef
%feature("docstring") OT::DistributionImplementation::getRange
OT_Distribution_getRange_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getRealization_doc
"Accessor to a pseudo-random realization from the distribution.
Returns
-------
point : :class:`~openturns.NumericalPoint`
A pseudo-random realization of the distribution.
See Also
--------
getSample, RandomGenerator"
%enddef
%feature("docstring") OT::DistributionImplementation::getRealization
OT_Distribution_getRealization_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getRoughness_doc
"Accessor to roughness of the distribution.
Returns
-------
r : float
Distribution's roughness.
Notes
-----
The roughness of the distribution is defined as the :math:`\\\\cL^2`-norm of its
PDF:
.. math::
r = \\\\int_{\\\\supp{\\\\vect{X}}} f_{\\\\vect{X}}(\\\\vect{x})^2 \\\\di{\\\\vect{x}}
See Also
--------
computePDF"
%enddef
%feature("docstring") OT::DistributionImplementation::getRoughness
OT_Distribution_getRoughness_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getSample_doc
"Accessor to a pseudo-random sample from the distribution.
Parameters
----------
size : int
Sample size.
Returns
-------
sample : :class:`~openturns.NumericalSample`
A pseudo-random sample of the distribution.
See Also
--------
getRealization, RandomGenerator"
%enddef
%feature("docstring") OT::DistributionImplementation::getSample
OT_Distribution_getSample_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getShapeMatrix_doc
"Accessor to the shape matrix of the underlying copula if it is elliptical.
Returns
-------
shape : :class:`~openturns.CorrelationMatrix`
Shape matrix of the distribution's elliptical copula.
Notes
-----
This is not the Pearson correlation matrix.
See Also
--------
getPearsonCorrelation"
%enddef
%feature("docstring") OT::DistributionImplementation::getShapeMatrix
OT_Distribution_getShapeMatrix_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getSkewness_doc
"Accessor to the componentwise skewness.
Returns
-------
d : :class:`~openturns.NumericalPoint`
Componentwise skewness.
Notes
-----
The skewness is the third-order standard moment:
.. math::
\\\\vect{\\\\delta} = \\\\Tr{\\\\left(\\\\Expect{\\\\left(\\\\frac{X_i - \\\\mu_i}
{\\\\sigma_i}\\\\right)^3},
\\\\quad i = 1, \\\\ldots, n\\\\right)}"
%enddef
%feature("docstring") OT::DistributionImplementation::getSkewness
OT_Distribution_getSkewness_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getSpearmanCorrelation_doc
"Accessor to the Spearman correlation matrix.
Returns
-------
R : :class:`~openturns.CorrelationMatrix`
Spearman's correlation matrix.
Notes
-----
Spearman's (rank) correlation is defined as the normalized covariance matrix
of the copula (ie that of the uniform margins):
.. math::
\\\\mat{\\\\rho_S} = \\\\left[\\\\frac{\\\\Cov{F_{X_i}(X_i), F_{X_j}(X_j)}}
{\\\\sqrt{\\\\Var{F_{X_i}(X_i)} \\\\Var{F_{X_j}(X_j)}}},
\\\\quad i,j = 1, \\\\ldots, n\\\\right]
See Also
--------
getKendallTau"
%enddef
%feature("docstring") OT::DistributionImplementation::getSpearmanCorrelation
OT_Distribution_getSpearmanCorrelation_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getStandardDeviation_doc
"Accessor to the componentwise standard deviation.
The standard deviation is the square root of the variance.
Returns
-------
sigma : :class:`~openturns.NumericalPoint`
Componentwise standard deviation.
See Also
--------
getCovariance"
%enddef
%feature("docstring") OT::DistributionImplementation::getStandardDeviation
OT_Distribution_getStandardDeviation_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getStandardDistribution_doc
"Accessor to the standard distribution.
Returns
-------
standard_distribution : :class:`~openturns.Distribution`
Standard distribution.
Notes
-----
The standard distribution is determined according to the distribution
properties. This is the target distribution achieved by the iso-probabilistic
transformation.
See Also
--------
getIsoProbabilisticTransformation"
%enddef
%feature("docstring") OT::DistributionImplementation::getStandardDistribution
OT_Distribution_getStandardDistribution_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getStandardMoment_doc
"Accessor to the componentwise standard moments.
Parameters
----------
k : int
The standard moment's order.
Returns
-------
m : :class:`~openturns.NumericalPoint`
Componentwise standard moment of order `k`.
Notes
-----
Standard moments are centered with respect to the first-order moment and
normalized with respect to the standard deviation:
.. math::
\\\\overline{\\\\vect{m}}^{(k)}_0 =
\\\\Tr{\\\\left(\\\\Expect{\\\\left(\\\\frac{X_i - \\\\mu_i}
{\\\\sigma_i}\\\\right)^k},
\\\\quad i = 1, \\\\ldots, n\\\\right)}
See Also
--------
getMean, getStandardDeviation"
%enddef
%feature("docstring") OT::DistributionImplementation::getStandardMoment
OT_Distribution_getStandardMoment_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getStandardRepresentative_doc
"Accessor to the standard representative distribution in the parametric family.
Returns
-------
std_repr_dist : :class:`~openturns.Distribution`
Standard representative distribution.
Notes
-----
The standard representative distribution is the one associated with the
standard moments."
%enddef
%feature("docstring") OT::DistributionImplementation::getStandardRepresentative
OT_Distribution_getStandardRepresentative_doc
// ---------------------------------------------------------------------
%define OT_Distribution_getSupport_doc
"Accessor to the distribution's support.
Parameters
----------
interval : :class:`~openturns.Interval`
An interval to intersect with the distribution's support.
Returns
-------
support : :class:`~openturns.Interval`
The intersection of the distribution's support with the given `interval`.
Notes
-----
The mathematical support :math:`\\\\supp{\\\\vect{X}}` of the distribution is
the interval (or collection of intervals) where the PDF is non-zero.
This is yet implemented for discrete distributions only.
See Also
--------
getRange"
%enddef
%feature("docstring") OT::DistributionImplementation::getSupport
OT_Distribution_getSupport_doc
// ---------------------------------------------------------------------
%define OT_Distribution_hasEllipticalCopula_doc
"Test whether the distribution's copula is elliptical or not.
Returns
-------
test : bool
Answer.
See Also
--------
isElliptical"
%enddef
%feature("docstring") OT::DistributionImplementation::hasEllipticalCopula
OT_Distribution_hasEllipticalCopula_doc
// ---------------------------------------------------------------------
%define OT_Distribution_hasIndependentCopula_doc
"Test whether the distribution's copula is independent.
Returns
-------
test : bool
Answer."
%enddef
%feature("docstring") OT::DistributionImplementation::hasIndependentCopula
OT_Distribution_hasIndependentCopula_doc
// ---------------------------------------------------------------------
%define OT_Distribution_isContinuous_doc
"Test whether the distribution is continuous or not.
Returns
-------
test : bool
Answer."
%enddef
%feature("docstring") OT::DistributionImplementation::isContinuous
OT_Distribution_isContinuous_doc
// ---------------------------------------------------------------------
%define OT_Distribution_isCopula_doc
"Test whether the distribution is a copula or not.
Returns
-------
test : bool
Answer.
Notes
-----
A copula is a distribution with uniform margins on [0; 1]."
%enddef
%feature("docstring") OT::DistributionImplementation::isCopula
OT_Distribution_isCopula_doc
// ---------------------------------------------------------------------
%define OT_Distribution_isDiscrete_doc
"Test whether the distribution is discrete or not.
Returns
-------
test : bool
Answer."
%enddef
%feature("docstring") OT::DistributionImplementation::isDiscrete
OT_Distribution_isDiscrete_doc
// ---------------------------------------------------------------------
%define OT_Distribution_isElliptical_doc
"Test whether the distribution is elliptical or not.
Returns
-------
test : bool
Answer.
Notes
-----
A multivariate distribution is said to be *elliptical* if its characteristic
function is of the form:
.. math::
\\\\phi(\\\\vect{t}) = \\\\exp\\\\left(i \\\\Tr{\\\\vect{t}} \\\\vect{\\\\mu}\\\\right)
\\\\Psi\\\\left(\\\\Tr{\\\\vect{t}} \\\\mat{\\\\Sigma} \\\\vect{t}\\\\right),
\\\\quad \\\\vect{t} \\\\in \\\\Rset^n
for specified vector :math:`\\\\vect{\\\\mu}` and positive-definite matrix
:math:`\\\\mat{\\\\Sigma}`. The function :math:`\\\\Psi` is known as the
*characteristic generator* of the elliptical distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::isElliptical
OT_Distribution_isElliptical_doc
// ---------------------------------------------------------------------
%define OT_Distribution_isIntegral_doc
"Test whether the distribution is integer-valued or not.
Returns
-------
test : bool
Answer."
%enddef
%feature("docstring") OT::DistributionImplementation::isIntegral
OT_Distribution_isIntegral_doc
// ---------------------------------------------------------------------
%define OT_Distribution_setDescription_doc
"Accessor to the componentwise description.
Parameters
----------
description : sequence of str
Description of the distribution's components."
%enddef
%feature("docstring") OT::DistributionImplementation::setDescription
OT_Distribution_setDescription_doc
// ---------------------------------------------------------------------
%define OT_Distribution_setParametersCollection_doc
"Accessor to the distribution's parameters.
Parameters
----------
parameters : :class:`~openturns.NumericalPointWithDescription`
Dictionary-like object with parameters names and values."
%enddef
%feature("docstring") OT::DistributionImplementation::setParametersCollection
OT_Distribution_setParametersCollection_doc
// ---------------------------------------------------------------------
%define OT_Distribution_cos_doc
"Transform distribution by cosine function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::cos
OT_Distribution_cos_doc
// ---------------------------------------------------------------------
%define OT_Distribution_sin_doc
"Transform distribution by sine function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::sin
OT_Distribution_sin_doc
// ---------------------------------------------------------------------
%define OT_Distribution_tan_doc
"Transform distribution by tangent function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::tan
OT_Distribution_tan_doc
// ---------------------------------------------------------------------
%define OT_Distribution_acos_doc
"Transform distribution by arccosine function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::acos
OT_Distribution_acos_doc
// ---------------------------------------------------------------------
%define OT_Distribution_asin_doc
"Transform distribution by arcsine function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::asin
OT_Distribution_asin_doc
// ---------------------------------------------------------------------
%define OT_Distribution_atan_doc
"Transform distribution by arctangent function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::atan
OT_Distribution_atan_doc
// ---------------------------------------------------------------------
%define OT_Distribution_cosh_doc
"Transform distribution by cosh function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::cosh
OT_Distribution_cosh_doc
// ---------------------------------------------------------------------
%define OT_Distribution_sinh_doc
"Transform distribution by sinh function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::sinh
OT_Distribution_sinh_doc
// ---------------------------------------------------------------------
%define OT_Distribution_tanh_doc
"Transform distribution by tanh function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::tanh
OT_Distribution_tanh_doc
// ---------------------------------------------------------------------
%define OT_Distribution_acosh_doc
"Transform distribution by acosh function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::acosh
OT_Distribution_acosh_doc
// ---------------------------------------------------------------------
%define OT_Distribution_asinh_doc
"Transform distribution by asinh function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::asinh
OT_Distribution_asinh_doc
// ---------------------------------------------------------------------
%define OT_Distribution_atanh_doc
"Transform distribution by atanh function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::atanh
OT_Distribution_atanh_doc
// ---------------------------------------------------------------------
%define OT_Distribution_exp_doc
"Transform distribution by exponential function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::exp
OT_Distribution_exp_doc
// ---------------------------------------------------------------------
%define OT_Distribution_log_doc
"Transform distribution by natural logarithm function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::log
OT_Distribution_log_doc
// ---------------------------------------------------------------------
%define OT_Distribution_ln_doc
"Transform distribution by natural logarithm function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::ln
OT_Distribution_ln_doc
// ---------------------------------------------------------------------
%define OT_Distribution_inverse_doc
"Transform distribution by inverse function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::inverse
OT_Distribution_inverse_doc
// ---------------------------------------------------------------------
%define OT_Distribution_sqr_doc
"Transform distribution by square function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::sqr
OT_Distribution_sqr_doc
// ---------------------------------------------------------------------
%define OT_Distribution_sqrt_doc
"Transform distribution by square root function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::sqrt
OT_Distribution_sqrt_doc
// ---------------------------------------------------------------------
%define OT_Distribution_cbrt_doc
"Transform distribution by cubic root function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::cbrt
OT_Distribution_cbrt_doc
// ---------------------------------------------------------------------
%define OT_Distribution_abs_doc
"Transform distribution by absolute value function.
Returns
-------
dist : :class:`~openturns.Distribution`
The transformed distribution."
%enddef
%feature("docstring") OT::DistributionImplementation::abs
OT_Distribution_abs_doc
|