This file is indexed.

/usr/include/openturns/swig/DomainImplementation_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
%define OT_Domain_doc
"Domain.

Available constructors:
    Domain(*lowerBound, upperBound*)

Parameters
----------
lowerBound, upperBound : sequence of float of dimension *dim*
    Define a finite :class:`interval <openturns.Interval>`
    :math:`[lowerBound_0, upperBound_0]\\\\times \\\\dots \\\\times [lowerBound_{dim-1}, upperBound_{dim-1}]`.
    It is allowed to have :math:`lowerBound_i \\\\geq upperBound_i` for some
    :math:`i`: it simply defines an empty interval.
    By default, an empty interval is created.

Notes
-----
A Domain object can be created through its derived classes:

- :class:`~openturns.Mesh`

- :class:`~openturns.RegularGrid`

- :class:`~openturns.Interval`

- :class:`~openturns.LevelSet`

Examples
--------
>>> import openturns as ot
>>> # Create the interval [a, b]
>>> a = 1
>>> b = 3
>>> print(ot.Domain([a], [b]))
[1, 3]
>>> print(ot.Domain(ot.Interval(a, b)))
[1, 3]"
%enddef
%feature("docstring") OT::DomainImplementation
OT_Domain_doc

// ---------------------------------------------------------------------

%define OT_Domain_contains_doc
"Check if the given point is inside of the domain.

Parameters
----------
point : sequence of float
    Point with the same dimension as the current domain's dimension.

Returns
-------
isInside : bool
    Flag telling whether the given point is inside of the domain."
%enddef
%feature("docstring") OT::DomainImplementation::contains
OT_Domain_contains_doc

// ---------------------------------------------------------------------

%define OT_Domain_getDimension_doc
"Get the dimension of the domain.

Returns
-------
dim : int
    Dimension of the domain."
%enddef
%feature("docstring") OT::DomainImplementation::getDimension
OT_Domain_getDimension_doc

// ---------------------------------------------------------------------

%define OT_Domain_getNumericalVolume_doc
"Get the volume of the domain.

Returns
-------
volume : float
    Volume of the underlying mesh which is the discretization of the domain.
    For now, by default, it is equal to the geometrical volume."
%enddef
%feature("docstring") OT::DomainImplementation::getNumericalVolume
OT_Domain_getNumericalVolume_doc

// ---------------------------------------------------------------------

%define OT_Domain_getVolume_doc
"Get the geometric volume of the domain.

Returns
-------
volume : float
    Geometrical volume of the domain."
%enddef
%feature("docstring") OT::DomainImplementation::getVolume
OT_Domain_getVolume_doc

// ---------------------------------------------------------------------

%define OT_Domain_isEmpty_doc
"Test whether the domain is empty or not.

Returns
-------
isInside : bool
    *True* if the interior of the geometric domain is empty."
%enddef
%feature("docstring") OT::DomainImplementation::isEmpty
OT_Domain_isEmpty_doc

// ---------------------------------------------------------------------

%define OT_Domain_isNumericallyEmpty_doc
"Check if the domain is numerically empty.

Returns
-------
isInside : bool
    Flag telling whether the domain is numerically empty, i.e. if its numerical
    volume is inferior or equal to :math:`\\\\epsilon` (defined in the
    :class:`~openturns.ResourceMap`:
    :math:`\\\\epsilon` = DomainImplementation-SmallVolume).

Examples
--------
>>> import openturns as ot
>>> domain = ot.Domain([1., 2.], [1., 2.]) 
>>> print(domain.isNumericallyEmpty())
True"
%enddef
%feature("docstring") OT::DomainImplementation::isNumericallyEmpty
OT_Domain_isNumericallyEmpty_doc

// ---------------------------------------------------------------------

%define OT_Domain_numericallyContains_doc
"Check if the given point is inside of the discretization of the domain.

Parameters
----------
point : sequence of float
    Point with the same dimension as the current domain's dimension.

Returns
-------
isInside : bool
    Flag telling whether the point is inside the discretized domain associated
    to the domain. For now, by default, the discretized domain is equal to the
    geometrical domain."
%enddef
%feature("docstring") OT::DomainImplementation::numericallyContains
OT_Domain_numericallyContains_doc