/usr/include/openturns/swig/EnumerateFunctionImplementation_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | %define OT_EnumerateFunction_doc
"Enumerate function.
Available constructors:
EnumerateFunction(*dim=1*)
EnumerateFunction(*dim, q*)
EnumerateFunction(*weight, q*)
Parameters
----------
dim : positive int
If *dim* is the only argument mentioned, it is used to create
a :class:`~openturns.LinearEnumerateFunction` object of dimension *dim*.
If *q* is also mentioned, it is used to create
a :class:`~openturns.HyperbolicAnisotropicEnumerateFunction` object of
dimension *dim* and parameter *q*.
q : float
The q-quasi-norm parameter used to create a
:class:`~openturns.HyperbolicAnisotropicEnumerateFunction` object.
weight : sequence of float
The weights of the indices in each dimension used to create a
:class:`~openturns.HyperbolicAnisotropicEnumerateFunction` object.
Notes
-----
*EnumerateFunction* represents a bijection from :math:`\\\\Nset` to
:math:`\\\\Nset^{dim}`. This bijection is based on a particular procedure of
enumerating the set of multi-indices. It begins from the multi-index
:math:`\\\\{0,0,\\\\dots,0\\\\}`.
We associate a multi-index :math:`\\\\{j_{p1}, j_{p2},\\\\dots, j_{pdim}\\\\}` for every
integer :math:`i_p` in :math:`\\\\Nset`:
For more details, let us consider any :math:`i_p, i_q \\\\in \\\\Nset`:
if :math:`|i_p-i_q|\\\\leq 1` then
:math:`|\\\\sum_{k=1}^{dim} (j_{pk}- j_{qk})| \\\\leq 1`. This proposition provides a
necessary but unsufficient condition for the construction of the bijection.
Another assumption was done indicating the way of iteration.
Below an example showing this assumption.
Example for :math:`dim=2`:
.. math::
phi(0) &= [0 ~ 0] \\\\\\\\
phi(1) &= [1 ~ 0] \\\\\\\\
phi(2) &= [0 ~ 1] \\\\\\\\
phi(3) &= [2 ~ 0] \\\\\\\\
phi(4) &= [1 ~ 1] \\\\\\\\
phi(5) &= [0 ~ 2] \\\\\\\\
phi(6) &= [3 ~ 0]
For the functional expansion (respectively polynomial chaos expansion), the
multi-index :math:`\\\\vect{i_p}` represents the collection of degrees of the
selected orthogonal functions (respectively orthogonal polynomials). In fact,
after the selection of the type of orthogonal functions (respectively
orthogonal polynomials) for the construction of the orthogonal basis, the
*EnumerateFunction* characterizes the term of the basis by providing the
degrees of the univariate functions (respectively univariate polynomials).
In order to know the degree of the :math:`k^{th}` polynomial of the
multivariate basis, it is enough to sum all the integers given in the list.
Examples
--------
>>> import openturns as ot
>>> enumerateFunction = ot.EnumerateFunction(ot.LinearEnumerateFunction(2))
>>> for i in range(6):
... print(enumerateFunction(i))
[0,0]
[1,0]
[0,1]
[2,0]
[1,1]
[0,2]"
%enddef
%feature("docstring") OT::EnumerateFunctionImplementation
OT_EnumerateFunction_doc
// ---------------------------------------------------------------------
%define OT_EnumerateFunction_getDimension_doc
"Return the dimension of the *EnumerateFunction*.
Returns
-------
dim : int, :math:`dim \\\\geq 0`
Dimension of the *EnumerateFunction*."
%enddef
%feature("docstring") OT::EnumerateFunctionImplementation::getDimension
OT_EnumerateFunction_getDimension_doc
// ---------------------------------------------------------------------
%define OT_EnumerateFunction_getMaximumDegreeCardinal_doc
"Get the cardinal of indices of degree inferior or equal to a given value.
Parameters
----------
maximumDegree : int
Number of polynoms of the basis.
Returns
-------
cardinal : int
Cardinal of indices of degree :math:`max \\\\leq maximumDegree`.
Examples
--------
>>> import openturns as ot
>>> enumerateFunction = ot.EnumerateFunction(ot.LinearEnumerateFunction(2))
>>> for i in range(6):
... indices = enumerateFunction(i)
... degree = sum(indices)
... print(str(int(degree))+' '+str(indices))
0 [0,0]
1 [1,0]
1 [0,1]
2 [2,0]
2 [1,1]
2 [0,2]
>>> print(enumerateFunction.getMaximumDegreeCardinal(2))
6"
%enddef
%feature("docstring") OT::EnumerateFunctionImplementation::getMaximumDegreeCardinal
OT_EnumerateFunction_getMaximumDegreeCardinal_doc
// ---------------------------------------------------------------------
%define OT_EnumerateFunction_getMaximumDegreeStrataIndex_doc
"Get the index of the strata of degree inferior to a given value.
Parameters
----------
maximumDegree : int
Degree.
Returns
-------
index : int
Index of the strata of degree :math:`max < maximumDegree`.
Examples
--------
>>> import openturns as ot
>>> enumerateFunction = ot.EnumerateFunction(ot.LinearEnumerateFunction(2))
>>> for i in [1, 2]:
... indices = enumerateFunction(i)
... strataIndex = sum(indices) + 1
... print(str(int(strataIndex))+' '+str(indices))
2 [1,0]
2 [0,1]
>>> print(enumerateFunction.getMaximumDegreeStrataIndex(2))
2"
%enddef
%feature("docstring") OT::EnumerateFunctionImplementation::getMaximumDegreeStrataIndex
OT_EnumerateFunction_getMaximumDegreeStrataIndex_doc
// ---------------------------------------------------------------------
%define OT_EnumerateFunction_getStrataCardinal_doc
"Get the number of members of the basis associated to a given strata.
Parameters
----------
strataIndex : int
Index of the strata in the hierarchical basis. In the context of product of
polynomial basis, this is the total polynom degree.
Returns
-------
cardinal : int
Number of members of the basis associated to the strata *strataIndex*. In
the context of product of polynomial basis, this is the number of polynoms
of the basis which total degree is *strataIndex*.
Examples
--------
>>> import openturns as ot
>>> enumerateFunction = ot.EnumerateFunction(ot.LinearEnumerateFunction(2))
>>> for i in [3, 4, 5]:
... indices = enumerateFunction(i)
... degree = sum(indices)
... print(str(int(degree))+' '+str(indices))
2 [2,0]
2 [1,1]
2 [0,2]
>>> print(enumerateFunction.getStrataCardinal(2))
3"
%enddef
%feature("docstring") OT::EnumerateFunctionImplementation::getStrataCardinal
OT_EnumerateFunction_getStrataCardinal_doc
// ---------------------------------------------------------------------
%define OT_EnumerateFunction_getStrataCumulatedCardinal_doc
"Get the cardinal of the cumulated strata above or equal to the given strata.
Parameters
----------
strataIndex : int
Index of the strata in the hierarchical basis. In the context of product of
polynomial basis, this is the total polynomial degree.
Returns
-------
cardinal : int
Number of members of the basis associated to the strates inferior or equal
to *strataIndex*. In the context of product of polynomial basis, this is
the number of polynomials of the basis which total degree is inferior or
equal to *strataIndex*.
Examples
--------
>>> import openturns as ot
>>> enumerateFunction = ot.EnumerateFunction(ot.LinearEnumerateFunction(2))
>>> for i in range(6):
... indices = enumerateFunction(i)
... degree = sum(indices)
... print(str(int(degree))+' '+str(indices))
0 [0,0]
1 [1,0]
1 [0,1]
2 [2,0]
2 [1,1]
2 [0,2]
>>> print(enumerateFunction.getStrataCumulatedCardinal(2))
6"
%enddef
%feature("docstring") OT::EnumerateFunctionImplementation::getStrataCumulatedCardinal
OT_EnumerateFunction_getStrataCumulatedCardinal_doc
// ---------------------------------------------------------------------
%define OT_EnumerateFunction_inverse_doc
"Get the antecedent of a indices list in the *EnumerateFunction*.
Parameters
----------
multiIndex : sequence of int
List of indices.
Returns
-------
antecedent : int
Represents the antecedent of the *multiIndex* in the *EnumerateFunction*.
Examples
--------
>>> import openturns as ot
>>> enumerateFunction = ot.EnumerateFunction(ot.LinearEnumerateFunction(2))
>>> for i in range(6):
... print(str(i)+' '+str(enumerateFunction(i)))
0 [0,0]
1 [1,0]
2 [0,1]
3 [2,0]
4 [1,1]
5 [0,2]
>>> print(enumerateFunction.inverse([1,1]))
4"
%enddef
%feature("docstring") OT::EnumerateFunctionImplementation::inverse
OT_EnumerateFunction_inverse_doc
// ---------------------------------------------------------------------
%define OT_EnumerateFunction_setDimension_doc
"Set the dimension of the *EnumerateFunction*.
Parameters
----------
dim : int, :math:`dim \\\\geq 0`
Dimension of the *EnumerateFunction*."
%enddef
%feature("docstring") OT::EnumerateFunctionImplementation::setDimension
OT_EnumerateFunction_setDimension_doc
// ---------------------------------------------------------------------
|