This file is indexed.

/usr/include/openturns/swig/ExponentialModel_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
%feature("docstring") OT::ExponentialModel
"Multivariate stationary exponential covariance function.

Available constructors:
    ExponentialModel(*spatialDim, amplitude, scale*)

    ExponentialModel(*spatialDim, amplitude, scale, spatialCorrelation*)

    ExponentialModel(*spatialDim, scale, spatialCovariance*)

    ExponentialModel(*scale, amplitude*)

    ExponentialModel(*scale, amplitude, spatialCorrelation*)

    ExponentialModel(*scale, amplitude, spatialCovariance*)

Parameters
----------
spatialDim : int
    Dimension of the domain :math:`\\\\cD`.
amplitude : sequence of float
    Vector :math:`\\\\vect{a}` of dimension :math:`d`.
scale : sequence of float
    Vector :math:`\\\\vect{\\\\lambda}` of dimension :math:`spatialDim`.
spatialCorrelation : :class:`~openturns.CorrelationMatrix`
    Correlation matrix :math:`\\\\mat{R} \\\\in \\\\mathcal{S}^{+}_{d}(\\\\Rset)`, with values in [-1,1]
spatialCovariance : :class:`~openturns.CovarianceMatrix`
    Covariance matrix :math:`C^{stat} \\\\in \\\\mathcal{M}_{+}^{*}(\\\\Rset^d)`.

Notes
-----
The Exponential model defines the stationary covariance function
:math:`C^{stat}(\\\\vect{\\\\tau}) = C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau}) \\\\forall (\\\\vect{s},\\\\vect{\\\\tau}) \\\\in \\\\cD`
such that :

.. math::

    \\\\forall \\\\vect{\\\\tau} \\\\in \\\\cD,\\\\quad
    C^{stat}( \\\\vect{\\\\tau} )=\\\\left[\\\\mat{A}\\\\mat{\\\\Delta}( \\\\vect{\\\\tau} ) \\\\right] \\\\,\\\\mat{R}\\\\, \\\\left[ \\\\mat{\\\\Delta}( \\\\vect{\\\\tau} )\\\\mat{A}\\\\right]

where :math:`\\\\mat{R} \\\\in  \\\\mathcal{M}_{d \\\\times d}([-1, 1])` is a correlation
matrix, :math:`\\\\mat{\\\\Delta}( \\\\vect{\\\\tau} ) \\\\in \\\\mathcal{M}_{d \\\\times d}(\\\\Rset)`
is defined by:

.. math::

    \\\\mat{\\\\Delta}( \\\\vect{\\\\tau} )= \\\\mbox{Diag}(e^{-\\\\lambda_1|\\\\tau|/2}, \\\\dots, e^{-\\\\lambda_d|\\\\tau|/2})

and :math:`\\\\mat{A}\\\\in \\\\mathcal{M}_{d \\\\times d}(\\\\Rset)` is defined by:

.. math::

    \\\\mat{A}= \\\\mbox{Diag}(a_1, \\\\dots, a_d)

with :math:`\\\\lambda_i>0` and :math:`a_i>0` for any :math:`i`.

We call :math:`\\\\vect{a}` the amplitude vector and :math:`\\\\vect{\\\\lambda}` the
scale vector.

We define the spatial covariance matrix :math:`\\\\mat{C}^{spat}` by:

.. math::

    \\\\forall \\\\vect{t} \\\\in \\\\cD,\\\\quad
    \\\\mat{C}^{spat} = \\\\Expect{X_{\\\\vect{t}}\\\\Tr{X}_{\\\\vect{t}}}
                   = \\\\mat{A}\\\\,\\\\mat{R}\\\\, \\\\mat{A}

- In the first usage, we fix the dimension spatial dimension :math:`n`, the
  scale :math:`\\\\vect{a}` and the amplitude  :math:`\\\\vect{\\\\lambda}`. By default,
  :math:`\\\\mat{R}=\\\\mat{Id}(d)`. The dimension :math:`d` is deduced.

- In the second usage, we fix the dimension spatial dimension :math:`n`, the
  scale  :math:`\\\\vect{a}`, the amplitude :math:`\\\\vect{\\\\lambda}` and the spatial
  correlation matrix  :math:`\\\\mat{R}`. The dimension :math:`d` is deduced.

- In the third usage, the dimension spatial dimension :math:`n`, the scale
  :math:`\\\\vect{a}`, the amplitude :math:`\\\\vect{\\\\lambda}` and the spatial
  covariance matrix :math:`C^{stat}`. The dimension :math:`d` is deduced.

Examples
--------
Create an *ExponentialModel* from the amplitude and scale:

>>> import openturns as ot
>>> amplitude = [1., 2.]
>>> scale = [4., 5.]
>>> spatialDimension = 2
>>> myCovarianceModel = ot.ExponentialModel(spatialDimension, amplitude, scale)

Create an *ExponentialModel* from the amplitude, scale and correlation matrix:

>>> amplitude = [1., 2.]
>>> scale = [4., 5.]
>>> spatialCorrelation = ot.CorrelationMatrix(2)
>>> spatialCorrelation[0,1] = 0.8
>>> spatialDimension = 2
>>> myCovarianceModel = ot.ExponentialModel(spatialDimension, amplitude, scale)

Create an *ExponentialModel* from the amplitude, scale and covariance matrix:

>>> amplitude = [1., 2.]
>>> scale = [4., 5.]
>>> spatialCovariance = ot.CovarianceMatrix(2)
>>> spatialCovariance[0,0] = 4.0
>>> spatialCovariance[1,1] = 5.0
>>> spatialCovariance[0,1] = 1.2
>>> spatialDimension = 2
>>> myCovarianceModel = ot.ExponentialModel(spatialDimension, scale, spatialCovariance)"