This file is indexed.

/usr/include/openturns/swig/ExponentiallyDampedCosineModel_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
%feature("docstring") OT::ExponentiallyDampedCosineModel
"Spherical covariance model.

Available constructors:
    ExponentiallyDampedCosineModel(*dim=1*)
    ExponentiallyDampedCosineModel(*dim=1, amplitude, scale, frequency*)

Parameters
----------
dim : int, :math:`dim \\\\geq 0`
    Input dimension (spatial dimension).
amplitude : sequence of float
    Vector :math:`\\\\vect{a}` of dimension :math:`d`.
    Amplitude of the covariance model
scale : sequence of float
    Vector :math:`\\\\vect{\\\\lambda}` of dimension :math:`spatialDim`.
    Scale parameter
frequency : float
    Frequency parameter

Notes
-----
The covariance function of input dimension *dim* is defined as follows:

.. math::

    C(s, t) = \\\\sigma^2 exp(-||\\\\frac{s-t}{\\\\theta}||) * cos(2 * \\\\pi * frequency * ||\\\\frac{s-t}{\\\\theta}||)

where the division is vectorial, :math:`\\\\theta` is the scale parameter, :math:`\\\\sigma` is the amplitude (default value is 1.0). Note that the model is unidimensional.

See Also
--------
CovarianceModel, SquaredExponential, GeneralizedExponential, MaternModel

Examples
--------
>>> import openturns as ot
>>> covarianceModel = ot.ExponentiallyDampedCosineModel([1.0], [0.2, 0.3], 2)
>>> t = [0.1, 0.3]
>>> s = [0.5, 0.4]
>>> print(covarianceModel(s, t))
[[ 0.12968 ]]
>>> tau = [0.1, 0.1]
>>> print(covarianceModel(tau))
[[ -0.441706 ]]"