/usr/include/openturns/swig/GeneralizedLinearModelResult_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | %feature("docstring") OT::GeneralizedLinearModelResult
"Generalized linear model result.
Available constructors:
GeneralizedLinearModelResult(*inputSample, outputSample, metaModel, residuals, relativeErrors, basis, trendCoefficients, covarianceModel*)
GeneralizedLinearModelResult(*inputSample, outputSample, metaModel, residuals, relativeErrors, basis, trendCoefficients, covarianceModel, covarianceCholeskyFactor, covarianceHMatrix*)
Parameters
----------
inputSample, outputSample : :class:`~openturns.NumericalSample`
The input and output samples of a model evaluated apart.
metaModel: :class:`~openturns.NumericalMathFunction`
The surrogate model built thanks to :class:`~openturns.GeneralizedLinearModelAlgorithm`.
residuals: :class:`~openturns.NumericalPoint`
The residual errors.
relativeErrors: :class:`~openturns.NumericalPoint`
The relative errors.
basis : collection of :class:`~openturns.Basis`
Its size should be equal to the output dimension or zero if no trend is estimated.
The n-th basis is the functional basis (or the generalized linear model) for the n-th output marginal.
trendCoefficients : collection of :class:`~openturns.NumericalPoint`
The trend coeffients associated to the generalized linear model.
covarianceModel : :class:`~openturns.CovarianceModel`
Covariance function.
covarianceCholeskyFactor : :class:`~openturns.TriangularMatrix`
The Cholesky factor of associated to the evaluation of the covariance function evaluated at the inputSample.
covarianceHMatrix : :class:`~openturns.HMatrix`
The *hmat* implementation of the Cholesky factor of the covariance matrix obtained by the discretization of the covariance function on the input sample.
Notes
-----
The structure is usually created by the method run() of a :class:`~openturns.GeneralizedLinearModelAlgorithm`, and obtained thanks to the *getResult()* method.
We use the notations used for the :class:`~openturns.GeneralizedLinearModelAlgorithm` class.
For a set :math:`(\\\\vect{X}, \\\\vect{Y})` such as:
.. math::
\\\\vect{X} = \\\\left(
\\\\begin{array}{l}
\\\\vect{x}_1 \\\\\\\\
\\\\dots \\\\\\\\
\\\\vect{x}_n
\\\\end{array}
\\\\right) \\\\in \\\\mathcal{M}_{n, d}, \\\\quad
\\\\vect{Y} = \\\\left(
\\\\begin{array}{l}
\\\\vect{y}_1 \\\\\\\\
\\\\dots \\\\\\\\
\\\\vect{y}_n
\\\\end{array}
\\\\right) \\\\in \\\\mathcal{M}_{n, p}
we recall the expression of the genrealized linear model:
.. math::
\\\\vect{Y}(\\\\vect{x}) = \\\\vect{F}^t(\\\\vect{x}) \\\\vect{\\\\beta} + \\\\vect{Z}
where :math:`\\\\mat{F} \\\\in \\\\mathcal{M}_{np, M}(\\\\Rset)` and writes:
.. math::
\\\\mat{F}(\\\\vect{x}) = \\\\left(
\\\\begin{array}{lcl}
\\\\vect{f}_1(\\\\vect{x}_1) & \\\\dots & \\\\vect{f}_M(\\\\vect{x}_1) \\\\\\\\
\\\\dots & \\\\dots & \\\\\\\\
\\\\vect{f}_1(\\\\vect{x}_n) & \\\\dots & \\\\vect{f}_M(\\\\vect{x}_n)
\\\\end{array}
\\\\right)
:math:`\\\\vect{\\\\beta} \\\\in \\\\mathcal{M}_{np, M}(\\\\Rset)` are the trend coefficients, estimated by a least-squares method.
Finally, :math:`\\\\vect{Z} \\\\sim \\\\mathcal{N}(0, \\\\mat{\\\\Sigma})` is a noise with:
.. math::
\\\\mat{\\\\Sigma}_{i,j} = C_{\\\\vect{\\\\sigma}, \\\\vect{\\\\theta}, \\\\vect{\\\\lambda}}(\\\\vect{x}_i,\\\\vect{x}_j) \\\\quad \\\\forall (i,j) \\\\in [1,n]
Examples
--------
Create the model :math:`\\\\cM: \\\\Rset \\\\mapsto \\\\Rset` and the samples:
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x'], ['x * sin(x)'])
>>> sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
>>> sampleY = f(sampleX)
Create the algorithm:
>>> basis = ot.Basis([ot.NumericalMathFunction('x', 'x'), ot.NumericalMathFunction('x', 'x^2')])
>>> covarianceModel = ot.GeneralizedExponential(1, 2.0, 2.0)
>>> algo = ot.GeneralizedLinearModelAlgorithm(sampleX, sampleY, covarianceModel, basis)
>>> algo.run()
Get the result:
>>> result = algo.getResult()
Get the meta model:
>>> metaModel = result.getMetaModel()
>>> graph = metaModel.draw(0.0, 7.0)
>>> cloud = ot.Cloud(sampleX, sampleY)
>>> cloud.setPointStyle('fcircle')
>>> graph = ot.Graph()
>>> graph.add(cloud)
>>> graph.add(f.draw(0.0, 7.0))
>>> graph.setColors(['black', 'blue', 'red'])
"
// ---------------------------------------------------------------------
%feature("docstring") OT::GeneralizedLinearModelResult::getTrendCoefficients
"Accessor to the coefficients of the generalized linear model of the trend.
Returns
-------
trendCoef : collection of :class:`~openturns.NumericalPoint`
For each output marginal *j*, the list of :math:`\\\\vect{\\\\beta}_j`.
If a collection of basis has been fixed by the User, the vectors :math:`\\\\vect{\\\\beta}_j` don't have the same dimension according to the output marginal *j*.
Examples
--------
Create the model :math:`\\\\cM: \\\\Rset \\\\mapsto \\\\Rset` and the samples:
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x'], ['x * sin(x)'])
>>> inputSample = ot.NumericalSample([[1.], [3.], [5.], [6.,], [7.], [8.]])
>>> outputSample = f(inputSample)
Create the algorithm:
>>> basis = ot.ConstantBasisFactory().build()
>>> covarianceModel = ot.SquaredExponential(1)
>>> algo = ot.GeneralizedLinearModelAlgorithm(inputSample, outputSample, covarianceModel, basis)
>>> algo.run()
Get the results:
>>> result = algo.getResult()
Get the trend coefficients:
>>> trendCoefficients = result.getTrendCoefficients()"
// ---------------------------------------------------------------------
%feature("docstring") OT::GeneralizedLinearModelResult::getCovarianceModel
"Accessor to the covariance model.
Returns
-------
covModel : :class:`~openturns.CovarianceModel`
The covariance model of the Normal process *Z*, noted :math:`C_{\\\\vect{\\\\sigma}, \\\\vect{\\\\theta}, \\\\vect{\\\\lambda}}`.
Its spatial dimension is *d* and its dimension is *p*.
Examples
--------
Create the model :math:`\\\\cM: \\\\Rset \\\\mapsto \\\\Rset` and the samples:
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x'], ['x * sin(x)'])
>>> inputSample = ot.NumericalSample([[1.], [3.], [5.], [6.,], [7.], [8.]])
>>> outputSample = f(inputSample)
Create the algorithm:
>>> basis = ot.ConstantBasisFactory().build()
>>> covarianceModel = ot.SquaredExponential(1)
>>> algo = ot.GeneralizedLinearModelAlgorithm(inputSample, outputSample, covarianceModel, basis)
>>> algo.run()
Get the results:
>>> result = algo.getResult()
>>> # Get the covariance model
Get the covariance model:
>>> covariance = result.getCovarianceModel()"
// ---------------------------------------------------------------------
%feature("docstring") OT::GeneralizedLinearModelResult::getBasisCollection
"Accessor to the multivariate basis of the generalized linear model.
Returns
-------
basisCollection : collection of :class:`~openturns.Basis`
Each element of this class is a :class:`~openturns.Basis` which is the functional basis (or the generalized linear model).
Notes
-----
If the trend is not estimated, the collection is empty. Otherwise, it contains a number of basis equal to the output dimension *p*.
Examples
--------
Create the model :math:`\\\\cM: \\\\Rset \\\\mapsto \\\\Rset` and the samples:
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x'], ['x * sin(x)'])
>>> inputSample = ot.NumericalSample([[1.], [3.], [5.], [6.,], [7.], [8.]])
>>> outputSample = f(inputSample)
Create the algorithm:
>>> basis = ot.ConstantBasisFactory().build()
>>> covarianceModel = ot.SquaredExponential(1)
>>> algo = ot.GeneralizedLinearModelAlgorithm(inputSample, outputSample, covarianceModel, basis)
>>> algo.run()
Get the results:
>>> result = algo.getResult()
>>> # Get the basis collection
Get the basis collection:
>>> basisCollection = result.getBasisCollection()"
// ---------------------------------------------------------------------
%feature("docstring") OT::GeneralizedLinearModelResult::getMetaModel
"Accessor to the metamodel.
Returns
-------
metaModel : :class:`~openturns.NumericalMathFunction`
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x0'], ['f0'], ['x0 * sin(x0)'])
>>> inputSample = ot.NumericalSample([[1.], [3.], [5.], [6.,], [7.], [8.]])
>>> outputSample = f(inputSample)
>>> # Create the algorithm
>>> basis = ot.ConstantBasisFactory().build()
>>> covarianceModel = ot.SquaredExponential(1)
>>> algo = ot.GeneralizedLinearModelAlgorithm(inputSample, outputSample, covarianceModel, basis)
>>> algo.run()
>>> # Get the results
>>> result = algo.getResult()
>>> # The metamodel
>>> metaModel = result.getMetaModel()"
// ---------------------------------------------------------------------
%feature("docstring") OT::GeneralizedLinearModelResult::getTransformation
"Accessor to the transformation applied to normalize the input sample.
Returns
-------
transformation : :class:`~openturns.NumericalMathFunction`
The transformation that isused to normalize the input sample.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::GeneralizedLinearModelResult::setTransformation
"Set accessor to the transformation applied to normalize the input sample.
Parameters
----------
transformation : :class:`~openturns.NumericalMathFunction`
The transformation that should be applied to normalize the input sample.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::GeneralizedLinearModelResult::getNoise
"Accessor to the underlying noise process.
Returns
-------
process : :class:`~openturns.Process`
Returns the underlying process modeling the noise.
Notes
-----
The noise process writes:
.. math::
\\\\cY \\\\sim \\\\cN\\\\left(0 , C_{\\\\vect{\\\\sigma}, \\\\vect{\\\\theta}, \\\\vect{\\\\lambda}} \\\\right)
Examples
--------
Create the model :math:`\\\\cM: \\\\Rset \\\\mapsto \\\\Rset` and the samples:
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x'], ['x * sin(x)'])
>>> inputSample = ot.NumericalSample([[1.], [3.], [5.], [6.,], [7.], [8.]])
>>> outputSample = f(inputSample)
Create the algorithm:
>>> basis = ot.ConstantBasisFactory().build()
>>> covarianceModel = ot.SquaredExponential(1)
>>> algo = ot.GeneralizedLinearModelAlgorithm(inputSample, outputSample, covarianceModel, basis)
>>> algo.run()
Get the results:
>>> result = algo.getResult()
Get the noise process:
>>> noise_process = result.getNoise()
"
// ---------------------------------------------------------------------
|