This file is indexed.

/usr/include/openturns/swig/GeneralizedPareto_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
%feature("docstring") OT::GeneralizedPareto
"Generalized Pareto distribution.

Available constructors:
    GeneralizedPareto(*sigma=1.0, xi=0.*)

Parameters
----------
sigma : float, :math:`\\\\sigma > 0`
    Scale parameter :math:`\\\\sigma`.
xi : float
    Shape parameter :math:`\\\\xi`.

Notes
-----
Its cumulative distribution function is defined as:

.. math::

    F_X(x) = \\\\left\\\\{\\\\begin{array}{ll}
               \\\\displaystyle 1 - \\\\left[1 + \\\\xi \\\\frac{x}{\\\\sigma}\\\\right]^{-1/\\\\xi}
                    & \\\\text{ if } \\\\xi \\\\neq 0 \\\\\\\\
               \\\\displaystyle 1 - \\\\exp\\\\left(-\\\\frac{x}{\\\\sigma}\\\\right)
                    & \\\\text{ if } \\\\xi = 0
            \\\\end{array}\\\\right.,
            \\\\quad x \\\\in [0; +\\\\infty[

with :math:`\\\\sigma > 0` and :math:`\\\\xi \\\\in \\\\Rset`.

Its first moments are:

.. math::
    :nowrap:

    \\\\begin{eqnarray*}
        \\\\Expect{X} & = & \\\\frac{\\\\sigma}{1 - \\\\xi}
                         \\\\quad \\\\text{ if } \\\\xi < 1 \\\\\\\\
        \\\\Var{X} & = & \\\\frac{\\\\sigma^2}{(1 - 2 \\\\xi) (1 - \\\\xi)^2}
                      \\\\quad \\\\text{ if } \\\\xi < \\\\frac{1}{2}
    \\\\end{eqnarray*}

Examples
--------
Create a distribution:

>>> import openturns as ot
>>> distribution = ot.GeneralizedPareto(1., 0.)

Draw a sample:

>>> sample = distribution.getSample(10)"

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedPareto::getSigma
"Accessor to the distribution's scale parameter :math:`\\\\sigma`.

Returns
-------
sigma : float
    Scale parameter :math:`\\\\sigma`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedPareto::getXi
"Accessor to the distribution's shape parameter :math:`\\\\xi`.

Returns
-------
xi : float
    Shape parameter :math:`\\\\xi`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedPareto::setSigma
"Accessor to the distribution's scale parameter :math:`\\\\sigma`.

Parameters
----------
sigma : float, :math:`\\\\sigma > 0`
    Scale parameter :math:`\\\\sigma`."

// ---------------------------------------------------------------------

%feature("docstring") OT::GeneralizedPareto::setXi
"Accessor to the distribution's shape parameter :math:`\\\\xi`.

Parameters
----------
xi : float, :math:`\\\\xi \\\\in \\\\Rset`
    Shape parameter :math:`\\\\xi`."