/usr/include/openturns/swig/Gumbel_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | %feature("docstring") OT::Gumbel
"Gumbel distribution.
Available constructors:
Gumbel(*arg1=1.0, arg2=0., parameters_set=ot.Gumbel.ALPHABETA*)
Parameters
----------
arg1 : float
If `parameters_set == ot.Gumbel.ALPHABETA`: scale parameter :math:`\\\\alpha > 0`.
If `parameters_set == ot.Gumbel.AB`: location parameter :math:`a = \\\\beta`.
If `parameters_set == ot.Gumbel.MUSIGMA`: mean.
arg2 : float
If `parameters_set == ot.Gumbel.ALPHABETA`: location parameter :math:`\\\\beta`.
If `parameters_set == ot.Gumbel.AB`: scale parameter :math:`b = 1 / \\\\alpha > 0`.
If `parameters_set == ot.Gumbel.MUSIGMA`: standard deviation :math:`\\\\sigma > 0`.
parameters_set : int, optional
Integer telling which parameters set is used for defining the
distribution (amongst `ot.Gumbel.ALPHABETA, ot.Gumbel.AB, ot.Gumbel.MUSIGMA`).
Notes
-----
Its probability density function is defined as:
.. math::
f_X(x) = \\\\alpha
\\\\exp\\\\left[- \\\\alpha (x - \\\\beta)
- \\\\exp\\\\left(- \\\\alpha (x - \\\\beta)\\\\right)\\\\right],
\\\\quad x \\\\in \\\\Rset
with :math:`\\\\alpha > 0` and :math:`\\\\beta \\\\in \\\\Rset`.
Its first moments are:
.. math::
:nowrap:
\\\\begin{eqnarray*}
\\\\Expect{X} & = & \\\\beta + \\\\frac{\\\\gamma}{\\\\alpha} \\\\\\\\
\\\\Var{X} & = & \\\\frac{\\\\pi^2}{6 \\\\alpha^2}
\\\\end{eqnarray*}
where :math:`\\\\gamma` is the Euler-Mascheroni constant.
Examples
--------
Create a distribution:
>>> import openturns as ot
>>> distribution = ot.Gumbel(1., 0.)
Draw a sample:
>>> sample = distribution.getSample(10)"
// ---------------------------------------------------------------------
%feature("docstring") OT::Gumbel::getAlpha
"Accessor to the distribution's scale parameter :math:`\\\\alpha`.
Returns
-------
alpha : float
Scale parameter :math:`\\\\alpha`."
// ---------------------------------------------------------------------
%feature("docstring") OT::Gumbel::getBeta
"Accessor to the distribution's location parameter :math:`\\\\beta`.
Returns
-------
beta : float
Location parameter :math:`\\\\beta`."
// ---------------------------------------------------------------------
%feature("docstring") OT::Gumbel::getMu
"Accessor to the distribution's mean.
Returns
-------
mu : float
Mean."
// ---------------------------------------------------------------------
%feature("docstring") OT::Gumbel::getSigma
"Accessor to the distribution's standard deviation.
Returns
-------
sigma : float, :math:`\\\\sigma > 0`
Standard deviation."
// ---------------------------------------------------------------------
%feature("docstring") OT::Gumbel::setAlpha
"Accessor to the distribution's scale parameter :math:`\\\\alpha`.
Parameters
----------
alpha : float, :math:`\\\\alpha > 0`
Scale parameter :math:`\\\\alpha`."
// ---------------------------------------------------------------------
%feature("docstring") OT::Gumbel::setBeta
"Accessor to the distribution's scale parameter :math:`\\\\beta`.
Parameters
----------
beta : float, :math:`\\\\beta \\\\in \\\\Rset`
Location parameter :math:`\\\\beta`."
// ---------------------------------------------------------------------
%feature("docstring") OT::Gumbel::setMuSigma
"Accessor to the distribution's mean and standard deviation.
Parameters
----------
mu : float
Mean.
sigma : float, :math:`\\\\sigma > 0`
Standard deviation."
|