This file is indexed.

/usr/include/openturns/swig/Gumbel_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
%feature("docstring") OT::Gumbel
"Gumbel distribution.

Available constructors:
    Gumbel(*arg1=1.0, arg2=0., parameters_set=ot.Gumbel.ALPHABETA*)

Parameters
----------
arg1 : float
    If `parameters_set == ot.Gumbel.ALPHABETA`: scale parameter :math:`\\\\alpha > 0`.

    If `parameters_set == ot.Gumbel.AB`: location parameter :math:`a = \\\\beta`.

    If `parameters_set == ot.Gumbel.MUSIGMA`: mean.
arg2 : float
    If `parameters_set == ot.Gumbel.ALPHABETA`: location parameter :math:`\\\\beta`.

    If `parameters_set == ot.Gumbel.AB`: scale parameter :math:`b = 1 / \\\\alpha > 0`.

    If `parameters_set == ot.Gumbel.MUSIGMA`: standard deviation :math:`\\\\sigma > 0`.
parameters_set : int, optional
    Integer telling which parameters set is used for defining the
    distribution (amongst `ot.Gumbel.ALPHABETA, ot.Gumbel.AB, ot.Gumbel.MUSIGMA`).

Notes
-----
Its probability density function is defined as:

.. math::

    f_X(x) = \\\\alpha
             \\\\exp\\\\left[- \\\\alpha (x - \\\\beta)
                       - \\\\exp\\\\left(- \\\\alpha (x - \\\\beta)\\\\right)\\\\right],
             \\\\quad x \\\\in \\\\Rset

with :math:`\\\\alpha > 0` and :math:`\\\\beta \\\\in \\\\Rset`.

Its first moments are:

.. math::
    :nowrap:

    \\\\begin{eqnarray*}
        \\\\Expect{X} & = & \\\\beta + \\\\frac{\\\\gamma}{\\\\alpha} \\\\\\\\
        \\\\Var{X} & = & \\\\frac{\\\\pi^2}{6 \\\\alpha^2}
    \\\\end{eqnarray*}

where :math:`\\\\gamma` is the Euler-Mascheroni constant.

Examples
--------
Create a distribution:

>>> import openturns as ot
>>> distribution = ot.Gumbel(1., 0.)

Draw a sample:

>>> sample = distribution.getSample(10)"

// ---------------------------------------------------------------------

%feature("docstring") OT::Gumbel::getAlpha
"Accessor to the distribution's scale parameter :math:`\\\\alpha`.

Returns
-------
alpha : float
    Scale parameter :math:`\\\\alpha`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Gumbel::getBeta
"Accessor to the distribution's location parameter :math:`\\\\beta`.

Returns
-------
beta : float
    Location parameter :math:`\\\\beta`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Gumbel::getMu
"Accessor to the distribution's mean.

Returns
-------
mu : float
    Mean."

// ---------------------------------------------------------------------

%feature("docstring") OT::Gumbel::getSigma
"Accessor to the distribution's standard deviation.

Returns
-------
sigma : float, :math:`\\\\sigma > 0`
    Standard deviation."

// ---------------------------------------------------------------------

%feature("docstring") OT::Gumbel::setAlpha
"Accessor to the distribution's scale parameter :math:`\\\\alpha`.

Parameters
----------
alpha : float, :math:`\\\\alpha > 0`
    Scale parameter :math:`\\\\alpha`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Gumbel::setBeta
"Accessor to the distribution's scale parameter :math:`\\\\beta`.

Parameters
----------
beta : float, :math:`\\\\beta \\\\in \\\\Rset`
    Location parameter :math:`\\\\beta`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Gumbel::setMuSigma
"Accessor to the distribution's mean and standard deviation.

Parameters
----------
mu : float
    Mean.
sigma : float, :math:`\\\\sigma > 0`
    Standard deviation."