This file is indexed.

/usr/include/openturns/swig/Interval_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
%feature("docstring") OT::Interval
"Numerical interval.

Available constructors:
    Interval(*dim=0*)

    Interval(*lowerBound, upperBound, finiteLowerBound=[True]*dim, finiteUpperBound=[True]*dim*)

Parameters
----------
dim : int, :math:`dim \\\\geq 0`
    Dimension of the interval. If only *dim* is mentioned, it leads to create
    the finite interval :math:`[0, 1]^{dim}`.
    By default, an empty interval is created.
lowerBound, upperBound : float or sequence of float of dimension *dim*
    Define an interval
    :math:`[lowerBound_0, upperBound_0]\\\\times \\\\dots \\\\times [lowerBound_{dim-1}, upperBound_{dim-1}]`.
    It is allowed to have :math:`lowerBound_i \\\\geq upperBound_i` for some
    :math:`i`: it simply defines an empty interval.
    The *lowerBound* and the *upperBound* must be of the same type. If
    *finiteLowerBound* and *finiteUpperBound* are mentioned, they must be
    sequences.
finiteLowerBound : sequence of bool of dimension *dim*
    Flags telling for each component of the lower bound whether it is finite or
    not.
finiteUpperBound : sequence of bool of dimension *dim*
    Flags telling for each component of the upper bound whether it is finite or
    not.

Notes
-----
The meaning of a flag is: if flag :math:`i` is *True*, the corresponding
component of the given bound is finite and its value is given by bound
:math:`i`. If not, the corresponding component is infinite and its value is
either :math:`-\\\\infty` if bound :math:`i < 0` or :math:`+\\\\infty` if bound
:math:`i \\\\geq 0`.

It is possible to add or substract two intervals and multiply an interval by a
scalar.

Examples
--------
>>> import openturns as ot
>>> # A finite interval
>>> print(ot.Interval([2., 3.], [4., 5.]))
[2, 4]
[3, 5]
>>> # Not finite intervals
>>> a = 2.
>>> print(ot.Interval([a], [1], [True], [False]))
[2, (1) +inf[
>>> print(ot.Interval([1], [a], [False], [True]))
]-inf (1), 2]
>>> # Operations with intervals:
>>> interval1 = ot.Interval([2., 3.], [5., 8.])
>>> interval2 = ot.Interval([1., 4.], [6., 13.])
>>> # Addition
>>> print(interval1 + interval2)
[3, 11]
[7, 21]
>>> # Substraction
>>> print(interval1 - interval2)
[-4, 4]
[-10, 4]
>>> # Multiplication
>>> print(interval1 * 3)
[6, 15]
[9, 24]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::getFiniteLowerBound
"Tell for each component of the lower bound whether it is finite or not.

Returns
-------
flags : :class:`~openturns.BoolCollection`
    If the :math:`i^{th}` element is *False*, the corresponding component of
    the lower bound is infinite. Otherwise, it is finite.

Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval([2., 3.], [4., 5.], [True, False], [True, True])
>>> print(interval.getFiniteLowerBound())
[1,0]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::setFiniteLowerBound
"Tell for each component of the lower bound whether it is finite or not.

Parameters
----------
flags : sequence of bool
    If the :math:`i^{th}` element is *False*, the corresponding component of
    the lower bound is infinite. Otherwise, it is finite.

Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setFiniteLowerBound([True, False])
>>> print(interval)
[0, 1]
]-inf (0), 1]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::getFiniteUpperBound
"Tell for each component of the upper bound whether it is finite or not.

Returns
-------
flags : :class:`~openturns.BoolCollection`
    If the :math:`i^{th}` element is *False*, the corresponding component of
    the upper bound is infinite. Otherwise, it is finite.

Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval([2., 3.], [4., 5.], [True, False], [True, True])
>>> print(interval.getFiniteUpperBound())
[1,1]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::setFiniteUpperBound
"Tell for each component of the upper bound whether it is finite or not.

Parameters
----------
flags : sequence of bool
    If the :math:`i^{th}` element is *False*, the corresponding component of
    the upper bound is infinite. Otherwise, it is finite.

Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setFiniteUpperBound([True, False])
>>> print(interval)
[0, 1]
[0, (1) +inf["

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::getLowerBound
"Get the lower bound.

Returns
-------
lowerBound : :class:`~openturns.NumericalPoint`
    Value of the lower bound.

Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval([2., 3.], [4., 5.], [True, False], [True, True])
>>> print(interval.getLowerBound())
[2,3]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::setLowerBound
"Set the lower bound.

Parameters
----------
lowerBound : sequence of float
    Value of the lower bound.

Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setLowerBound([-4, -5])
>>> print(interval)
[-4, 1]
[-5, 1]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::getUpperBound
"Get the upper bound.

Returns
-------
upperBound : :class:`~openturns.NumericalPoint`
    Value of the upper bound.

Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval([2., 3.], [4., 5.], [True, False], [True, True])
>>> print(interval.getUpperBound())
[4,5]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::setUpperBound
"Set the upper bound.

Parameters
----------
upperBound : sequence of float
    Value of the upper bound.

Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setUpperBound([4, 5])
>>> print(interval)
[0, 4]
[0, 5]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::intersect
"Get the intersection with an other interval.

Parameters
----------
otherInterval : :class:`~openturns.Interval`
    Interval of the same dimension.

Returns
-------
interval : :class:`~openturns.Interval`
    An interval corresponding to the intersection of the current interval with
    *otherInterval*.

Examples
--------
>>> import openturns as ot
>>> interval1 = ot.Interval([2., 3.], [5., 8.])
>>> interval2 = ot.Interval([1., 4.], [6., 13.])
>>> print(interval1.intersect(interval2))
[2, 5]
[4, 8]"

// ---------------------------------------------------------------------

%feature("docstring") OT::Interval::join
"Get the smallest interval containing both the current interval and another one.

Parameters
----------
otherInterval : :class:`~openturns.Interval`
    Interval of the same dimension.

Returns
-------
interval : :class:`~openturns.Interval`
    Smallest interval containing both the current interval and
    *otherInterval*.

Examples
--------
>>> import openturns as ot
>>> interval1 = ot.Interval([2., 3.], [5., 8.])
>>> interval2 = ot.Interval([1., 4.], [6., 13.])
>>> print(interval1.join(interval2))
[1, 6]
[3, 13]"