/usr/include/openturns/swig/Interval_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | %feature("docstring") OT::Interval
"Numerical interval.
Available constructors:
Interval(*dim=0*)
Interval(*lowerBound, upperBound, finiteLowerBound=[True]*dim, finiteUpperBound=[True]*dim*)
Parameters
----------
dim : int, :math:`dim \\\\geq 0`
Dimension of the interval. If only *dim* is mentioned, it leads to create
the finite interval :math:`[0, 1]^{dim}`.
By default, an empty interval is created.
lowerBound, upperBound : float or sequence of float of dimension *dim*
Define an interval
:math:`[lowerBound_0, upperBound_0]\\\\times \\\\dots \\\\times [lowerBound_{dim-1}, upperBound_{dim-1}]`.
It is allowed to have :math:`lowerBound_i \\\\geq upperBound_i` for some
:math:`i`: it simply defines an empty interval.
The *lowerBound* and the *upperBound* must be of the same type. If
*finiteLowerBound* and *finiteUpperBound* are mentioned, they must be
sequences.
finiteLowerBound : sequence of bool of dimension *dim*
Flags telling for each component of the lower bound whether it is finite or
not.
finiteUpperBound : sequence of bool of dimension *dim*
Flags telling for each component of the upper bound whether it is finite or
not.
Notes
-----
The meaning of a flag is: if flag :math:`i` is *True*, the corresponding
component of the given bound is finite and its value is given by bound
:math:`i`. If not, the corresponding component is infinite and its value is
either :math:`-\\\\infty` if bound :math:`i < 0` or :math:`+\\\\infty` if bound
:math:`i \\\\geq 0`.
It is possible to add or substract two intervals and multiply an interval by a
scalar.
Examples
--------
>>> import openturns as ot
>>> # A finite interval
>>> print(ot.Interval([2., 3.], [4., 5.]))
[2, 4]
[3, 5]
>>> # Not finite intervals
>>> a = 2.
>>> print(ot.Interval([a], [1], [True], [False]))
[2, (1) +inf[
>>> print(ot.Interval([1], [a], [False], [True]))
]-inf (1), 2]
>>> # Operations with intervals:
>>> interval1 = ot.Interval([2., 3.], [5., 8.])
>>> interval2 = ot.Interval([1., 4.], [6., 13.])
>>> # Addition
>>> print(interval1 + interval2)
[3, 11]
[7, 21]
>>> # Substraction
>>> print(interval1 - interval2)
[-4, 4]
[-10, 4]
>>> # Multiplication
>>> print(interval1 * 3)
[6, 15]
[9, 24]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::getFiniteLowerBound
"Tell for each component of the lower bound whether it is finite or not.
Returns
-------
flags : :class:`~openturns.BoolCollection`
If the :math:`i^{th}` element is *False*, the corresponding component of
the lower bound is infinite. Otherwise, it is finite.
Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval([2., 3.], [4., 5.], [True, False], [True, True])
>>> print(interval.getFiniteLowerBound())
[1,0]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::setFiniteLowerBound
"Tell for each component of the lower bound whether it is finite or not.
Parameters
----------
flags : sequence of bool
If the :math:`i^{th}` element is *False*, the corresponding component of
the lower bound is infinite. Otherwise, it is finite.
Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setFiniteLowerBound([True, False])
>>> print(interval)
[0, 1]
]-inf (0), 1]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::getFiniteUpperBound
"Tell for each component of the upper bound whether it is finite or not.
Returns
-------
flags : :class:`~openturns.BoolCollection`
If the :math:`i^{th}` element is *False*, the corresponding component of
the upper bound is infinite. Otherwise, it is finite.
Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval([2., 3.], [4., 5.], [True, False], [True, True])
>>> print(interval.getFiniteUpperBound())
[1,1]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::setFiniteUpperBound
"Tell for each component of the upper bound whether it is finite or not.
Parameters
----------
flags : sequence of bool
If the :math:`i^{th}` element is *False*, the corresponding component of
the upper bound is infinite. Otherwise, it is finite.
Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setFiniteUpperBound([True, False])
>>> print(interval)
[0, 1]
[0, (1) +inf["
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::getLowerBound
"Get the lower bound.
Returns
-------
lowerBound : :class:`~openturns.NumericalPoint`
Value of the lower bound.
Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval([2., 3.], [4., 5.], [True, False], [True, True])
>>> print(interval.getLowerBound())
[2,3]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::setLowerBound
"Set the lower bound.
Parameters
----------
lowerBound : sequence of float
Value of the lower bound.
Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setLowerBound([-4, -5])
>>> print(interval)
[-4, 1]
[-5, 1]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::getUpperBound
"Get the upper bound.
Returns
-------
upperBound : :class:`~openturns.NumericalPoint`
Value of the upper bound.
Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval([2., 3.], [4., 5.], [True, False], [True, True])
>>> print(interval.getUpperBound())
[4,5]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::setUpperBound
"Set the upper bound.
Parameters
----------
upperBound : sequence of float
Value of the upper bound.
Examples
--------
>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setUpperBound([4, 5])
>>> print(interval)
[0, 4]
[0, 5]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::intersect
"Get the intersection with an other interval.
Parameters
----------
otherInterval : :class:`~openturns.Interval`
Interval of the same dimension.
Returns
-------
interval : :class:`~openturns.Interval`
An interval corresponding to the intersection of the current interval with
*otherInterval*.
Examples
--------
>>> import openturns as ot
>>> interval1 = ot.Interval([2., 3.], [5., 8.])
>>> interval2 = ot.Interval([1., 4.], [6., 13.])
>>> print(interval1.intersect(interval2))
[2, 5]
[4, 8]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Interval::join
"Get the smallest interval containing both the current interval and another one.
Parameters
----------
otherInterval : :class:`~openturns.Interval`
Interval of the same dimension.
Returns
-------
interval : :class:`~openturns.Interval`
Smallest interval containing both the current interval and
*otherInterval*.
Examples
--------
>>> import openturns as ot
>>> interval1 = ot.Interval([2., 3.], [5., 8.])
>>> interval2 = ot.Interval([1., 4.], [6., 13.])
>>> print(interval1.join(interval2))
[1, 6]
[3, 13]"
|