This file is indexed.

/usr/include/openturns/swig/LevelSet_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
%feature("docstring") OT::LevelSet
"Level set.

Available constructors:
    LevelSet(*dim=1*)

    LevelSet(*function=ot.NumericalMathFunction('x', '1.'), level=0.*)

Parameters
----------
dim : int, :math:`dim \\\\geq 0`
    Dimension of the LevelSet.
function : :class:`~openturns.NumericalMathFunction`
    A function such that: :math:`f: \\\\Rset^{dim} \\\\mapsto \\\\Rset` defining the
    LevelSet.
level : float
    Level :math:`s` defining the LevelSet.

Notes
-----
A LevelSet is a :class:`~openturns.Domain` defined as follows:

.. math::

    \\\\{ \\\\vect{x} \\\\in \\\\Rset^{dim} \\\\, | \\\\, f(\\\\vect{x}) \\\\leq s \\\\}

Examples
--------
>>> import openturns as ot
>>> function = ot.NumericalMathFunction(['x1', 'x2'], ['x1^4 + x2^4'])
>>> s = 1.0
>>> levelSet = ot.LevelSet(function, s)"

// ---------------------------------------------------------------------

%feature("docstring") OT::LevelSet::intersect
"Return the levelSet equals to the intersection between the LevelSet and another one.

Parameters
----------
otherLevelSet :
    A LevelSet defined by :math:`(f_2, s_2)`.

Returns
-------
levelSet : :class:`~openturns.LevelSet`
    *levelSet* equals to the intersection between the LevelSet and
    *otherLevelSet* i.e. *levelSet* is defined by:
    :math:`\\\\{\\\\vect{x} \\\\in \\\\Rset^{dim} | f(\\\\vect{x}) \\\\leq s \\\\, \\\\mbox{and} \\\\, f_2(\\\\vect{x}) \\\\leq s_2\\\\}`.

Examples
--------
>>> import openturns as ot
>>> # First level set
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet1 = ot.LevelSet(function, 0.5)
>>> # Second level set
>>> function = ot.NumericalMathFunction(['x'], ['x'])
>>> levelSet2 = ot.LevelSet(function, 0.5)
>>> # Intersection between levelSet1 and levelSet2
>>> intersection = levelSet1.intersect(levelSet2)
>>> # Tests
>>> print(intersection.contains([1.]))
False
>>> print(intersection.contains([0.25]))
True"

// ---------------------------------------------------------------------

%feature("docstring") OT::LevelSet::join
"Return the levelSet equals to the union between the LevelSet and another one.

Parameters
----------
otherLevelSet :
    A LevelSet defined by :math:`(f_2, s_2)`.

Returns
-------
levelSet : :class:`~openturns.LevelSet`
    *levelSet* equals to the union between the LevelSet and *otherLevelSet*
    i.e. *levelSet* is defined by:
    :math:`\\\\{\\\\vect{x} \\\\in \\\\Rset^{dim} | f(\\\\vect{x}) \\\\leq s \\\\, \\\\mbox{or} \\\\, f_2(\\\\vect{x}) \\\\leq s_2\\\\}`.

Examples
--------
>>> import openturns as ot
>>> # First level set
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet1 = ot.LevelSet(function, 0.)
>>> # Second level set
>>> function = ot.NumericalMathFunction(['x'], ['x'])
>>> levelSet2 = ot.LevelSet(function, 0.)
>>> # Union between levelSet1 and levelSet2
>>> join = levelSet1.join(levelSet2)
>>> # Tests
>>> print(join.contains([0.5]))
False
>>> print(join.contains([0.25]))
True"

// ---------------------------------------------------------------------

%feature("docstring") OT::LevelSet::getFunction
"Get the function defining the level set.

Returns
-------
function : :class:`~openturns.NumericalMathFunction`
    A function such that: :math:`f: \\\\Rset^{dim} \\\\mapsto \\\\Rset` defining the
    LevelSet.

Examples
--------
>>> import openturns as ot
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet = ot.LevelSet(function, 0.)
>>> print(levelSet.getFunction().getEvaluation())
[x]->[3*x-1]"

// ---------------------------------------------------------------------

%feature("docstring") OT::LevelSet::setFunction
"Set the function defining the level set.

Parameters
----------
function : :class:`~openturns.NumericalMathFunction`
    A function such that: :math:`f: \\\\Rset^{dim} \\\\mapsto \\\\Rset` defining the
    LevelSet.

Examples
--------
>>> import openturns as ot
>>> levelSet = ot.LevelSet()
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet.setFunction(function)"

// ---------------------------------------------------------------------

%feature("docstring") OT::LevelSet::getLevel
"Get the level defining the level set.

Returns
-------
level : float
    Level :math:`s` defining the LevelSet.

Examples
--------
>>> import openturns as ot
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet = ot.LevelSet(function, 0.)
>>> print(levelSet.getLevel())
0.0"

// ---------------------------------------------------------------------

%feature("docstring") OT::LevelSet::setLevel
"Set the level defining the level set.

Parameters
----------
level : float
    Level :math:`s` defining the LevelSet.

Examples
--------
>>> import openturns as ot
>>> levelSet = ot.LevelSet()
>>> levelSet.setLevel(3.)"