/usr/include/openturns/swig/LevelSet_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | %feature("docstring") OT::LevelSet
"Level set.
Available constructors:
LevelSet(*dim=1*)
LevelSet(*function=ot.NumericalMathFunction('x', '1.'), level=0.*)
Parameters
----------
dim : int, :math:`dim \\\\geq 0`
Dimension of the LevelSet.
function : :class:`~openturns.NumericalMathFunction`
A function such that: :math:`f: \\\\Rset^{dim} \\\\mapsto \\\\Rset` defining the
LevelSet.
level : float
Level :math:`s` defining the LevelSet.
Notes
-----
A LevelSet is a :class:`~openturns.Domain` defined as follows:
.. math::
\\\\{ \\\\vect{x} \\\\in \\\\Rset^{dim} \\\\, | \\\\, f(\\\\vect{x}) \\\\leq s \\\\}
Examples
--------
>>> import openturns as ot
>>> function = ot.NumericalMathFunction(['x1', 'x2'], ['x1^4 + x2^4'])
>>> s = 1.0
>>> levelSet = ot.LevelSet(function, s)"
// ---------------------------------------------------------------------
%feature("docstring") OT::LevelSet::intersect
"Return the levelSet equals to the intersection between the LevelSet and another one.
Parameters
----------
otherLevelSet :
A LevelSet defined by :math:`(f_2, s_2)`.
Returns
-------
levelSet : :class:`~openturns.LevelSet`
*levelSet* equals to the intersection between the LevelSet and
*otherLevelSet* i.e. *levelSet* is defined by:
:math:`\\\\{\\\\vect{x} \\\\in \\\\Rset^{dim} | f(\\\\vect{x}) \\\\leq s \\\\, \\\\mbox{and} \\\\, f_2(\\\\vect{x}) \\\\leq s_2\\\\}`.
Examples
--------
>>> import openturns as ot
>>> # First level set
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet1 = ot.LevelSet(function, 0.5)
>>> # Second level set
>>> function = ot.NumericalMathFunction(['x'], ['x'])
>>> levelSet2 = ot.LevelSet(function, 0.5)
>>> # Intersection between levelSet1 and levelSet2
>>> intersection = levelSet1.intersect(levelSet2)
>>> # Tests
>>> print(intersection.contains([1.]))
False
>>> print(intersection.contains([0.25]))
True"
// ---------------------------------------------------------------------
%feature("docstring") OT::LevelSet::join
"Return the levelSet equals to the union between the LevelSet and another one.
Parameters
----------
otherLevelSet :
A LevelSet defined by :math:`(f_2, s_2)`.
Returns
-------
levelSet : :class:`~openturns.LevelSet`
*levelSet* equals to the union between the LevelSet and *otherLevelSet*
i.e. *levelSet* is defined by:
:math:`\\\\{\\\\vect{x} \\\\in \\\\Rset^{dim} | f(\\\\vect{x}) \\\\leq s \\\\, \\\\mbox{or} \\\\, f_2(\\\\vect{x}) \\\\leq s_2\\\\}`.
Examples
--------
>>> import openturns as ot
>>> # First level set
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet1 = ot.LevelSet(function, 0.)
>>> # Second level set
>>> function = ot.NumericalMathFunction(['x'], ['x'])
>>> levelSet2 = ot.LevelSet(function, 0.)
>>> # Union between levelSet1 and levelSet2
>>> join = levelSet1.join(levelSet2)
>>> # Tests
>>> print(join.contains([0.5]))
False
>>> print(join.contains([0.25]))
True"
// ---------------------------------------------------------------------
%feature("docstring") OT::LevelSet::getFunction
"Get the function defining the level set.
Returns
-------
function : :class:`~openturns.NumericalMathFunction`
A function such that: :math:`f: \\\\Rset^{dim} \\\\mapsto \\\\Rset` defining the
LevelSet.
Examples
--------
>>> import openturns as ot
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet = ot.LevelSet(function, 0.)
>>> print(levelSet.getFunction().getEvaluation())
[x]->[3*x-1]"
// ---------------------------------------------------------------------
%feature("docstring") OT::LevelSet::setFunction
"Set the function defining the level set.
Parameters
----------
function : :class:`~openturns.NumericalMathFunction`
A function such that: :math:`f: \\\\Rset^{dim} \\\\mapsto \\\\Rset` defining the
LevelSet.
Examples
--------
>>> import openturns as ot
>>> levelSet = ot.LevelSet()
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet.setFunction(function)"
// ---------------------------------------------------------------------
%feature("docstring") OT::LevelSet::getLevel
"Get the level defining the level set.
Returns
-------
level : float
Level :math:`s` defining the LevelSet.
Examples
--------
>>> import openturns as ot
>>> function = ot.NumericalMathFunction(['x'], ['3*x-1'])
>>> levelSet = ot.LevelSet(function, 0.)
>>> print(levelSet.getLevel())
0.0"
// ---------------------------------------------------------------------
%feature("docstring") OT::LevelSet::setLevel
"Set the level defining the level set.
Parameters
----------
level : float
Level :math:`s` defining the LevelSet.
Examples
--------
>>> import openturns as ot
>>> levelSet = ot.LevelSet()
>>> levelSet.setLevel(3.)"
|