This file is indexed.

/usr/include/openturns/swig/LinearModelTest_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
%feature("docstring") OT::LinearModelTest::LinearModelAdjustedRSquared
"Test the quality of the linear regression model.

Based on the adjusted :math:`R^2` indicator.

**Available usages**:

    LinearModelTest.LinearModelAdjustedRSquared(*firstSample, secondSample*)

    LinearModelTest.LinearModelAdjustedRSquared(*firstSample, secondSample, level*)


Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelRSquared, LinearModelTest_LinearModelFisher,
LinearModelTest_LinearModelResidualMean

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual, supposed to follow the standard Normal
distribution.

The LinearModelAdjustedRSquared test checks the quality of the linear
regression model. It evaluates the indicator :math:`R^2` adjusted (regression
variance analysis) and compares it to a level.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.NumericalMathFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelAdjustedRSquared(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=AdjustedRSquared binaryQualityMeasure=false p-value threshold=0.95 p-value=0.815998 description=[]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelFisher
"Test the nullity of the linear regression model coefficients.

**Available usages**:

    LinearModelTest.LinearModelFisher(*firstSample, secondSample*)

    LinearModelTest.LinearModelFisher(*firstSample, secondSample, level*)


Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelRSquared, LinearModelTest_LinearModelAdjustedRSquared,
LinearModelTest_LinearModelResidualMean

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual, supposed to follow the standard Normal
distribution.

The LinearModelFisher test checks the nullity of the regression linear model
coefficients (Fisher distribution is used).

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.NumericalMathFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelFisher(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=Fisher binaryQualityMeasure=false p-value threshold=0.05 p-value=1 description=[]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelRSquared
"Test the quality of the linear regression model based on the :math:`R^2` indicator.

**Available usages**:

    LinearModelTest.LinearModelRSquared(*firstSample, secondSample*)

    LinearModelTest.LinearModelRSquared(*firstSample, secondSample, level*)


Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelAdjustedRSquared,  LinearModelTest_LinearModelFisher, LinearModelTest_LinearModelResidualMean

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual, supposed to follow the standard Normal
distribution.

The LinearModelRSquared test checks the quality of the linear
regression model. It evaluates the indicator :math:`R^2` (regression
variance analysis) and compares it to a level.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.NumericalMathFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelRSquared(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=RSquared binaryQualityMeasure=false p-value threshold=0.95 p-value=0.822343 description=[]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::LinearModelTest::LinearModelResidualMean
"Test zero mean value of the residual of the linear regression model.

**Available usages**:

    LinearModelTest.LinearModelResidualMean(*firstSample, secondSample*)

    LinearModelTest.LinearModelResidualMean(*firstSample, secondSample, level*)


Parameters
----------
fisrtSample : 2-d sequence of float
    First tested sample, of dimension 1.
secondSample : 2-d sequence of float
    Second tested sample, of dimension 1.
level : positive float :math:`< 1`
    Threshold p-value of the test (= 1 - first type risk), it must be
    :math:`< 1`, equal to 0.95 by default.

Returns
-------
testResult : :class:`~openturns.TestResult`
    Structure containing the result of the test.

See Also
--------
LinearModelTest_LinearModelAdjustedRSquared,  LinearModelTest_LinearModelFisher, LinearModelTest_LinearModelRSquared

Notes
-----
The LinearModelTest class is used through its static methods in order to evaluate
the quality of the linear regression model between two samples
(see :class:`~openturns.LinearModel`). The linear regression model between the
scalar variable :math:`Y` and the :math:`n`-dimensional one
:math:`\\\\vect{X} = (X_i)_{i \\\\leq n}` is as follows:

.. math::

    \\\\tilde{Y} = a_0 + \\\\sum_{i=1}^n a_i X_i + \\\\epsilon

where :math:`\\\\epsilon` is the residual, supposed to follow the standard Normal
distribution.

The LinearModelResidualMean Test checks, under the hypothesis of a gaussian
sample, if the mean of the residual is equal to zero. It is based on the Student
test (equality of mean for two gaussian samples).

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> func = ot.NumericalMathFunction('x', '2 * x + 1')
>>> firstSample = sample
>>> secondSample = func(sample) + ot.Normal().getSample(30)
>>> test_result = ot.LinearModelTest.LinearModelResidualMean(firstSample, secondSample)
>>> print(test_result)
class=TestResult name=Unnamed type=ResidualMean binaryQualityMeasure=true p-value threshold=0.05 p-value=1 description=[]
"