This file is indexed.

/usr/include/openturns/swig/LowDiscrepancySequenceImplementation_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
%define OT_LowDiscrepancySequence_doc
"Base class to generate low discrepancy sequences.

Available constructors:
    LowDiscrepancySequence(*dimension=1*)

Parameters
----------
dimension : int
    Dimension of the points of the low discrepancy sequence.

Notes
-----
The low discrepancy sequences, also called 'quasi-random' sequences, are a
deterministic alternative to random sequences for use in Monte Carlo methods.
These sequences are sets of equidistributed points which the error in uniformity
is measured by its discrepancy.

The **discrepancy** of a set :math:`P = \\\\{x_1, \\\\hdots, x_N\\\\}` is defined,
using Niederreiter's notation, as:

.. math::

    D_N(P) = \\\\sup_{B\\\\in J} \\\\left| \\\\frac{A(B;P)}{N} - \\\\lambda_s(B) \\\\right|

where :math:`\\\\lambda_s` is the s-dimensional Lebesgue measure, :math:`A(B;P)`
is the number of points in :math:`P` that fall into :math:`B`, and :math:`J` is
the set of s-dimensional intervals or boxes of the form:

.. math::

    \\\\prod_{i=1}^s [a_i, b_i) = \\\\{ \\\\mathbf{x} \\\\in \\\\mathbf{R}^s : a_i \\\\le x_i < b_i \\\\} \\\\,

where :math:`0 \\\\le a_i < b_i \\\\le 1`.

The star-discrepancy :math:`D_N^*(P)` is defined similarly, except that the
supremum is taken over the set :math:`J^*` of intervals of the form:

.. math::

    \\\\prod_{i=1}^s [0, u_i)

where :math:`u_i` is in the half-open interval :math:`[0, 1)`.

A low-discrepancy sequence can be generated only through the derived classes of
LowDiscrepancySequence. OpenTURNS proposes the
:class:`Faure <openturns.FaureSequence>`,
:class:`Halton <openturns.HaltonSequence>`,
:class:`Reverse Halton <openturns.ReverseHaltonSequence>`,
:class:`Haselgrove <openturns.HaselgroveSequence>` and
:class:`Sobol <openturns.SobolSequence>` sequences.

Examples
--------
>>> import openturns as ot
>>> # Create a sequence of 3 points of 2 dimensions
>>> sequence = ot.LowDiscrepancySequence(ot.SobolSequence(2))
>>> print(sequence.generate(3))
0 : [ 0.5  0.5  ]
1 : [ 0.75 0.25 ]
2 : [ 0.25 0.75 ]"
%enddef
%feature("docstring") OT::LowDiscrepancySequenceImplementation
OT_LowDiscrepancySequence_doc

// ---------------------------------------------------------------------

%define OT_LowDiscrepancySequence_computeStarDiscrepancy_doc
"Compute the star discrepancy of a sample uniformly distributed over [0, 1).

Parameters
----------
sample : 2-d sequence of float

Returns
-------
starDiscrepancy : float
    Star discrepancy of a sample uniformly distributed over [0, 1).

Examples
--------
>>> import openturns as ot
>>> # Create a sequence of 3 points of 2 dimensions
>>> sequence = ot.LowDiscrepancySequence(ot.SobolSequence(2))
>>> sample = sequence.generate(16)
>>> print(sequence.computeStarDiscrepancy(sample))
0.12890625
>>> sample = sequence.generate(64)
>>> print(sequence.computeStarDiscrepancy(sample))
0.0537109375"
%enddef
%feature("docstring") OT::LowDiscrepancySequenceImplementation::ComputeStarDiscrepancy
OT_LowDiscrepancySequence_computeStarDiscrepancy_doc

// ---------------------------------------------------------------------

%define OT_LowDiscrepancySequence_generate_doc
"Generate a sample of pseudo-random vectors of numbers uniformly distributed over [0, 1).

Parameters
----------
size : int
    Number of points to be generated. Default is 1.

Returns
-------
sample : :class:`~openturns.NumericalSample`
    Sample of pseudo-random vectors of numbers uniformly distributed over
    [0, 1).

Examples
--------
>>> import openturns as ot
>>> # Create a sequence of 3 points of 2 dimensions
>>> sequence = ot.LowDiscrepancySequence(ot.SobolSequence(2))
>>> print(sequence.generate(3))
0 : [ 0.5  0.5  ]
1 : [ 0.75 0.25 ]
2 : [ 0.25 0.75 ]"
%enddef
%feature("docstring") OT::LowDiscrepancySequenceImplementation::generate
OT_LowDiscrepancySequence_generate_doc

// ---------------------------------------------------------------------

%define OT_LowDiscrepancySequence_getDimension_doc
"Accessor to the dimension of the points of the low discrepancy sequence.

Returns
-------
dimension : int
    Dimension of the points of the low discrepancy sequence."
%enddef
%feature("docstring") OT::LowDiscrepancySequenceImplementation::getDimension
OT_LowDiscrepancySequence_getDimension_doc

// ---------------------------------------------------------------------

%define OT_LowDiscrepancySequence_initialize_doc
"Initialize the sequence.

Parameters
----------
dimension : int
    Dimension of the points of the low discrepancy sequence.

Examples
--------
>>> import openturns as ot
>>> # Create a sequence of 3 points of 2 dimensions
>>> sequence = ot.LowDiscrepancySequence(ot.SobolSequence(2))
>>> print(sequence.generate(3))
0 : [ 0.5  0.5  ]
1 : [ 0.75 0.25 ]
2 : [ 0.25 0.75 ]
>>> print(sequence.generate(3))
0 : [ 0.375 0.375 ]
1 : [ 0.875 0.875 ]
2 : [ 0.625 0.125 ]
>>> sequence.initialize(2)
>>> print(sequence.generate(3))
0 : [ 0.5  0.5  ]
1 : [ 0.75 0.25 ]
2 : [ 0.25 0.75 ]"
%enddef
%feature("docstring") OT::LowDiscrepancySequenceImplementation::initialize
OT_LowDiscrepancySequence_initialize_doc