/usr/include/openturns/swig/Matrix_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | %feature("docstring") OT::Matrix
"Real rectangular matrix.
Parameters
----------
n_rows : int, :math:`n_r > 0`, optional
Number of rows.
Default is 1.
n_columns : int, :math:`n_c > 0`, optional
Number of columns.
Default is 1.
values : sequence of float with size :math:`n_r \\\\times n_c`, optional
Values. OpenTURNS uses **column-major** ordering (like Fortran) for
reshaping the flat list of values.
Default creates a zero matrix.
Examples
--------
Create a matrix
>>> import openturns as ot
>>> M = ot.Matrix(2, 2, range(2 * 2))
>>> print(M)
[[ 0 2 ]
[ 1 3 ]]
Get or set terms
>>> print(M[0, 0])
0.0
>>> M[0, 0] = 1.
>>> print(M[0, 0])
1.0
>>> print(M[:, 0])
[[ 1 ]
[ 1 ]]
Create an openturns matrix from a numpy 2d-array (or matrix, or 2d-list)...
>>> import numpy as np
>>> np_2d_array = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> ot_matrix = ot.Matrix(np_2d_array)
and back
>>> np_matrix = np.matrix(ot_matrix)
Basic linear algebra operations (provided the dimensions are compatible)
>>> A = ot.Matrix([[1., 2.], [3., 4.], [5., 6.]])
>>> B = ot.Matrix(np.eye(2))
>>> C = ot.Matrix(3, 2, [1.] * 3 * 2)
>>> print(A * B - C)
[[ 0 1 ]
[ 2 3 ]
[ 4 5 ]]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::clean
"Set elements smaller than a threshold to zero.
Parameters
----------
threshold : float
Threshold for zeroing elements.
Returns
-------
cleaned_matrix : :class:`~openturns.Matrix`
Input matrix with elements smaller than the threshold set to zero."
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::computeQR
"Compute the QR factorization. By default, it is the *economic* decomposition which is computed.
The economic QR factorization of a rectangular matrix :math:`\\\\mat{M}` with
:math:`n_r \\\\geq n_c` (more rows than columns) is defined as follows:
.. math::
\\\\mat{M} = \\\\mat{Q} \\\\mat{R}
= \\\\mat{Q} \\\\begin{bmatrix} \\\\mat{R_1} \\\\\\\\ \\\\mat{0} \\\\end{bmatrix}
= \\\\begin{bmatrix} \\\\mat{Q_1}, \\\\mat{Q_2} \\\\end{bmatrix}
\\\\begin{bmatrix} \\\\mat{R_1} \\\\\\\\ \\\\mat{0} \\\\end{bmatrix}
= \\\\mat{Q_1} \\\\mat{R_1}
where :math:`\\\\mat{R_1}` is an :math:`n_c \\\\times n_c` upper triangular matrix,
:math:`\\\\mat{Q_1}` is :math:`n_r \\\\times n_c`, :math:`\\\\mat{Q_2}` is
:math:`n_r \\\\times (n_r - n_c)`, and :math:`\\\\mat{Q_1}` and :math:`\\\\mat{Q_2}`
both have orthogonal columns.
Parameters
----------
full_qr : bool, optional
A flag telling whether `Q`, `R` or `Q1`, `R1` are returned.
Default is *False* and returns `Q1`, `R1`.
keep_intact : bool, optional
A flag telling whether the present matrix is preserved or not in the computation of the decomposition.
Default is *True* and leaves the present matrix unchanged.
Returns
-------
Q1 : :class:`~openturns.Matrix`
The orthogonal matrix of the economic QR factorization.
R1 : :class:`~openturns.TriangularMatrix`
The right (upper) triangular matrix of the economic QR factorization.
Q : :class:`~openturns.Matrix`
The orthogonal matrix of the full QR factorization.
R : :class:`~openturns.TriangularMatrix`
The right (upper) triangular matrix of the full QR factorization.
Notes
-----
The economic QR factorization is often used for solving overdetermined linear
systems (where the operator :math:`\\\\mat{M}` has :math:`n_r \\\\geq n_c`) in the
least-square sense because it implies solving a (simple) triangular system:
.. math::
\\\\vect{\\\\hat{x}} = \\\\arg\\\\min\\\\limits_{\\\\vect{x} \\\\in \\\\Rset^{n_r}} \\\\|\\\\mat{M} \\\\vect{x} - \\\\vect{b}\\\\|
= \\\\mat{R_1}^{-1} (\\\\Tr{\\\\mat{Q_1}} \\\\vect{b})
This uses LAPACK's `DGEQRF <http://www.netlib.org/lapack/lapack-3.1.1/html/dgeqrf.f.html>`_
and `DORGQR <http://www.netlib.org/lapack/lapack-3.1.1/html/dorgqr.f.html>`_.
Examples
--------
>>> import openturns as ot
>>> import numpy as np
>>> M = ot.Matrix([[1., 2.], [3., 4.], [5., 6.]])
>>> Q1, R1 = M.computeQR()
>>> np.testing.assert_array_almost_equal(Q1 * R1, M)"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::computeSingularValues
"Compute the singular values.
Parameters
----------
fullSVD : bool, optional
Whether the null parts of the orthogonal factors are explicitely stored
or not.
Default is *False* and computes a reduced SVD.
keep_intact : bool, optional
A flag telling whether the present matrix can be overwritten or not.
Default is *True* and leaves the present matrix unchanged.
Returns
-------
singular_values : :class:`~openturns.NumericalPoint`
The vector of singular values with size :math:`n = \\\\min(n_r, n_c)` that
form the diagonal of the :math:`n_r \\\\times n_c` matrix
:math:`\\\\mat{\\\\Sigma}` of the SVD decomposition.
See also
--------
computeSVD
Examples
--------
>>> import openturns as ot
>>> M = ot.Matrix([[1., 2.], [3., 4.], [5., 6.]])
>>> print(M.computeSingularValues(True))
[9.52552,0.514301]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::computeSVD
"Compute the singular values decomposition (SVD).
The singular values decomposition of a rectangular matrix :math:`\\\\mat{M}` with
size :math:`n_r > n_c` reads:
.. math::
\\\\mat{M} = \\\\mat{U} \\\\mat{\\\\Sigma} \\\\Tr{\\\\mat{V}}
where :math:`\\\\mat{U}` is an :math:`n_r \\\\times n_r` orthogonal matrix,
:math:`\\\\mat{\\\\Sigma}` is an :math:`n_r \\\\times n_c` diagonal matrix and
:math:`\\\\mat{V}` is an :math:`n_c \\\\times n_c` orthogonal matrix.
Parameters
----------
fullSVD : bool, optional
Whether the null parts of the orthogonal factors are explicitely stored
or not.
Default is *False* and computes a reduced SVD.
keep_intact : bool, optional
A flag telling whether the present matrix can be overwritten or not.
Default is *True* and leaves the present matrix unchanged.
Returns
-------
singular_values : :class:`~openturns.NumericalPoint`
The vector of singular values with size :math:`n = \\\\min(n_r, n_c)` that
form the diagonal of the :math:`n_r \\\\times n_c` matrix
:math:`\\\\mat{\\\\Sigma}` of the SVD.
U : :class:`~openturns.SquareMatrix`
The left orthogonal matrix of the SVD.
VT : :class:`~openturns.SquareMatrix`
The transposed right orthogonal matrix of the SVD.
Notes
-----
This uses LAPACK's `DGESDD <http://www.netlib.org/lapack/lapack-3.1.1/html/dgesdd.f.html>`_.
Examples
--------
>>> import openturns as ot
>>> import numpy as np
>>> M = ot.Matrix([[1., 2.], [3., 4.], [5., 6.]])
>>> singular_values, U, VT = M.computeSVD(True)
>>> Sigma = ot.Matrix(M.getNbRows(), M.getNbColumns())
>>> for i in range(singular_values.getSize()):
... Sigma[i, i] = singular_values[i]
>>> np.testing.assert_array_almost_equal(U * Sigma * VT, M)"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::getNbColumns
"Accessor to the number of columns.
Returns
-------
n_columns : int"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::getNbRows
"Accessor to the number of rows.
Returns
-------
n_rows : int"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::solveLinearSystem
"Solve a rectangular linear system whose the present matrix is the operator.
Parameters
----------
rhs : :class:`~openturns.NumericalPoint` or :class:`~openturns.Matrix` with :math:`n_r` values or rows, respectively
The right hand side member of the linear system.
keep_intact : bool, optional
A flag telling whether the present matrix can be overwritten or not.
Default is *True* and leaves the present matrix unchanged.
Returns
-------
solution : :class:`~openturns.NumericalPoint` or :class:`~openturns.Matrix`
The solution of the rectangular linear system.
Notes
-----
This will handle both matrices and vectors, as well as underdetermined, square
or overdetermined linear systems although you'd better type explicitely your
matrix if it has some properties that could simplify the resolution (see
:class:`~openturns.TriangularMatrix`, :class:`~openturns.SquareMatrix`).
This uses LAPACK's `DGELSY <http://www.netlib.org/lapack/lapack-3.1.1/html/dgelsy.f.html>`_.
The `RCOND` parameter of this routine can be changed through the `MatrixImplementation-DefaultSmallPivot`
key of the :class:`~openturns.ResourceMap`.
Examples
--------
>>> import openturns as ot
>>> import numpy as np
>>> M = ot.Matrix([[1., 2.], [3., 4.], [5., 6.]])
>>> b = ot.NumericalPoint([1.] * 3)
>>> x = M.solveLinearSystem(b)
>>> np.testing.assert_array_almost_equal(M * x, b)"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::transpose
"Transpose the matrix.
Returns
-------
MT : :class:`~openturns.Matrix`
The transposed matrix.
Examples
--------
>>> import openturns as ot
>>> M = ot.Matrix([[1., 2.], [3., 4.], [5., 6.]])
>>> print(M)
[[ 1 2 ]
[ 3 4 ]
[ 5 6 ]]
>>> print(M.transpose())
[[ 1 3 5 ]
[ 2 4 6 ]]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::computeGram
"Compute the associated Gram matrix.
Returns
-------
MT : :class:`~openturns.Matrix`
The Gram matrix.
Examples
--------
>>> import openturns as ot
>>> M = ot.Matrix([[1., 2.], [3., 4.], [5., 6.]])
>>> print(M.computeGram())
[[ 35 44 ]
[ 44 56 ]]"
// ---------------------------------------------------------------------
%feature("docstring") OT::Matrix::isEmpty
"Tell if the matrix is empty.
Returns
-------
is_empty : bool
True if the matrix contains no element.
Examples
--------
>>> import openturns as ot
>>> M = ot.Matrix([[]])
>>> M.isEmpty()
True"
|