This file is indexed.

/usr/include/openturns/swig/NLopt_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
%feature("docstring") OT::SLSQP
"Sequential Least-Squares Quadratic Programming solver.

Parameters
----------
problem : :class:`~openturns.OptimizationProblem`
    Optimization problem to solve.

See also
--------
AbdoRackwitz, Cobyla, SQP, TNC

Examples
--------
>>> import openturns as ot
>>> dim = 4
>>> bounds = ot.Interval([-3.] * dim, [5.] * dim)
>>> linear = ot.NumericalMathFunction(['x1', 'x2', 'x3', 'x4'], ['y1'], ['x1+2*x2-3*x3+4*x4'])
>>> problem = ot.OptimizationProblem(linear, ot.NumericalMathFunction(), ot.NumericalMathFunction(), bounds)
>>> algo = ot.SLSQP(problem)"




%feature("docstring") OT::LBFGS
"Low-storage BFGS algorithm.

Parameters
----------
problem : :class:`~openturns.OptimizationProblem`
    Optimization problem to solve.

See also
--------
AbdoRackwitz, Cobyla, SQP, TNC

Examples
--------
>>> import openturns as ot
>>> dim = 4
>>> bounds = ot.Interval([-3.] * dim, [5.] * dim)
>>> linear = ot.NumericalMathFunction(['x1', 'x2', 'x3', 'x4'], ['y1'], ['x1+2*x2-3*x3+4*x4'])
>>> problem = ot.OptimizationProblem(linear, ot.NumericalMathFunction(), ot.NumericalMathFunction(), bounds)
>>> algo = ot.LBFGS(problem)"




%feature("docstring") OT::NelderMead
"Nelder-Mead simplex algorithm.

Parameters
----------
problem : :class:`~openturns.OptimizationProblem`
    Optimization problem to solve.

See also
--------
AbdoRackwitz, Cobyla, SQP, TNC

Examples
--------
>>> import openturns as ot
>>> dim = 4
>>> bounds = ot.Interval([-3.] * dim, [5.] * dim)
>>> linear = ot.NumericalMathFunction(['x1', 'x2', 'x3', 'x4'], ['y1'], ['x1+2*x2-3*x3+4*x4'])
>>> problem = ot.OptimizationProblem(linear, ot.NumericalMathFunction(), ot.NumericalMathFunction(), bounds)
>>> algo = ot.NelderMead(problem)"