This file is indexed.

/usr/include/openturns/swig/NumericalMathFunction.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// SWIG file NumericalMathFunction.i

%{
#include "NumericalMathFunction.hxx"
#include "PythonNumericalMathEvaluationImplementation.hxx"
%}

%include BaseFuncCollection.i

OTTypedInterfaceObjectHelper(NumericalMathFunction)
//OTTypedCollectionInterfaceObjectHelper(NumericalMathFunction)



%typemap(in) const NumericalMathFunctionCollection & {
  void * ptr = 0;
  if (SWIG_IsOK(SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 0))) {
    // From interface class, ok
  } else if (SWIG_IsOK(SWIG_ConvertPtr($input, &ptr, SWIG_TypeQuery("OT::Basis *"), 0))) {
    // From Implementation*
    OT::Basis * p_impl = reinterpret_cast< OT::Basis * >( ptr );
    $1 = new OT::Collection<OT::NumericalMathFunction>(*p_impl);
  } else {
    try {
      $1 = OT::buildCollectionFromPySequence< OT::NumericalMathFunction >( $input );
    } catch (OT::InvalidArgumentException & ex) {
      SWIG_exception(SWIG_TypeError, "Object passed as argument is not convertible to a collection of NumericalMathFunction");
    }
  }
}

%typemap(typecheck,precedence=SWIG_TYPECHECK_POINTER) const NumericalMathFunctionCollection & {
  $1 = SWIG_IsOK(SWIG_ConvertPtr($input, NULL, $1_descriptor, 0))
    || OT::canConvertCollectionObjectFromPySequence< OT::NumericalMathFunction >( $input )
    || SWIG_IsOK(SWIG_ConvertPtr($input, NULL, SWIG_TypeQuery("OT::Basis *"), 0));
}

%apply const NumericalMathFunctionCollection & { const OT::Collection<OT::NumericalMathFunction> & };

%template(NumericalMathFunctionCollection) OT::Collection<OT::NumericalMathFunction>;
%template(NumericalMathFunctionPersistentCollection) OT::PersistentCollection<OT::NumericalMathFunction>;


%include NumericalMathFunction_doc.i

%ignore OT::NumericalMathFunction::getUseDefaultGradientImplementation;
%ignore OT::NumericalMathFunction::setUseDefaultGradientImplementation;
%ignore OT::NumericalMathFunction::getUseDefaultHessianImplementation;
%ignore OT::NumericalMathFunction::setUseDefaultHessianImplementation;

%include NumericalMathFunction.hxx

namespace OT {  

%extend NumericalMathFunction {

NumericalMathFunction(PyObject * pyObj)
{
  void * ptr = 0;
  if (SWIG_IsOK(SWIG_ConvertPtr(pyObj, &ptr, SWIG_TypeQuery("OT::Object *"), 0)))
  {
    throw OT::InvalidArgumentException(HERE) << "Argument should be a pure python object";
  }
  return new OT::NumericalMathFunction(OT::convert<OT::_PyObject_, OT::NumericalMathFunction>(pyObj));
}

NumericalMathFunction(const NumericalMathFunction & other)
{
  return new OT::NumericalMathFunction( other );
}

}

}

%pythoncode %{
# We have to make sure the submodule is loaded with absolute path
import openturns.typ

class OpenTURNSPythonFunction(object):
    """
    Override NumericalMathFunction from Python.

    Parameters
    ----------
    n : positive int
        the input dimension
    p : positive int
        the output dimension

    Notes
    -----
    You have to overload the function:
        _exec(X): single evaluation, X is a sequence of float,
        returns a sequence of float

    You can also optionally override these functions:
        _exec_sample(X): multiple evaluations, X is a 2-d sequence of float,
        returns a 2-d sequence of float

        _gradient(X): gradient, X is a sequence of float,
        returns a 2-d sequence of float

        _hessian(X): hessian, X is a sequence of float,
        returns a 3-d sequence of float
    """
    def __init__(self, n=0, p=0):
        try:
            self.__n = int(n)
        except:
            raise TypeError('n argument is not an integer.')
        try:
            self.__p = int(p)
        except:
            raise TypeError('p argument is not an integer.')
        self.__descIn = list(map(lambda i: 'x' + str(i), range(n)))
        self.__descOut = list(map(lambda i: 'y' + str(i), range(p)))

    def setInputDescription(self, descIn):
        if (len(descIn) != self.__n):
            raise ValueError('Input description size does NOT match input dimension')
        self.__descIn = descIn

    def getInputDescription(self):
        return self.__descIn

    def setOutputDescription(self, descOut):
        if (len(descOut) != self.__p):
            raise ValueError('Output description size does NOT match output dimension')
        self.__descOut = descOut

    def getOutputDescription(self):
        return self.__descOut

    def getInputDimension(self):
        return self.__n

    def getOutputDimension(self):
        return self.__p

    def __str__(self):
        return 'OpenTURNSPythonFunction( %s #%d ) -> %s #%d' % (self.__descIn, self.__n, self.__descOut, self.__p)

    def __repr__(self):
        return self.__str__()

    def __call__(self, X):
        Y = None
        try:
            pt = openturns.typ.NumericalPoint(X)
        except TypeError:
            try:
                ns = openturns.typ.NumericalSample(X)
            except TypeError:
                raise TypeError('Expect a 1-d or 2-d sequence of float as argument')
            else:
                Y = self._exec_sample(ns)
        else:
            Y = self._exec(pt)
        return Y

    def _exec(self, X):
        raise RuntimeError('You must define a method _exec(X) -> Y, where X and Y are 1-d sequence of float')

    def _exec_sample(self, X):
        res = list()
        for point in X:
            res.append(self._exec(point))
        return res

    def _exec_point_on_exec_sample(self, X):
        """Implement exec from exec_sample."""
        return self._exec_sample([X])[0]


class PythonFunction(NumericalMathFunction):
    """
    Override NumericalMathFunction from Python.

    Parameters
    ----------
    n : positive int
        the input dimension
    p : positive int
        the output dimension
    func : a callable python object
        called on a single point.
        Default is None.
    func_sample : a callable python object
        called on multiple points at once.
        Default is None.
    gradient : a callable python objects
        returns the gradient as a 2-d sequence of float.
        Default is None (uses finite-difference).
    hessian : a callable python object
        returns the hessian as a 3-d sequence of float.
        Default is None (uses finite-difference).

    Notes
    -----
    You may provide either one of func or func_sample arguments

    Examples
    --------
    >>> import openturns as ot
    >>> def a_exec(X):
    ...     Y = [3.*X[0] - X[1]]
    ...     return Y
    >>> def a_grad(X):
    ...     dY = [[3.], [-1.]]
    ...     return dY
    >>> f = ot.PythonFunction(2, 1, a_exec, gradient=a_grad)
    >>> X = [100., 100.]
    >>> Y = f(X)
    >>> print(Y)
    [200]
    >>> dY = f.gradient(X)
    >>> print(dY)
    [[  3 ]
     [ -1 ]]
    """
    def __new__(self, n, p, func=None, func_sample=None, gradient=None, hessian=None):
        if func == None and func_sample == None:
            raise RuntimeError('no func nor func_sample given.')
        instance = OpenTURNSPythonFunction(n, p)
        import collections
        if func != None:
            if not isinstance(func, collections.Callable):
                raise RuntimeError('func argument is not callable.')
            instance._exec = func
        if func_sample != None:
            if not isinstance(func_sample, collections.Callable):
                raise RuntimeError('func_sample argument is not callable.')
            instance._exec_sample = func_sample
            if func == None:
                instance._exec = instance._exec_point_on_exec_sample
        if gradient != None:
            if not isinstance(gradient, collections.Callable):
                raise RuntimeError('gradient argument is not callable.')
            instance._gradient = gradient
        if hessian != None:
            if not isinstance(hessian, collections.Callable):
                raise RuntimeError('hessian argument is not callable.')
            instance._hessian = hessian 
        return NumericalMathFunction(instance)
%}