/usr/include/openturns/swig/NumericalMathFunctionImplementation_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 | %define OT_NumericalMathFunction_doc
"Function.
Available constructors:
NumericalMathFunction(*filename*)
NumericalMathFunction(*inputs, outputs, formulas*)
NumericalMathFunction(*inputs, formulas*)
NumericalMathFunction(*inputString, formulaString, outputString = 'outputVariable'*)
NumericalMathFunction(*f, g*)
NumericalMathFunction(*functionCollection*)
NumericalMathFunction(*functionCollection, scalarCoefficientColl*)
NumericalMathFunction(*scalarFunctionCollection, vectorCoefficientColl*)
NumericalMathFunction(*function, comparisonOperator, threshold*)
NumericalMathFunction(*function, indices, parametersSet=True*)
NumericalMathFunction(*function, indices, referencePoint, parametersSet=True*)
NumericalMathFunction(*inputSample, outputSample*)
Parameters
----------
fileName : str or :class:`~openturns.WrapperFile`
A string to name the XML file (without the extension '.xml') which contains
the implementation of the considered function.
inputs : sequence of str
Ordered list of input variables names of the *NumericalMathFunction*.
outputs : sequence of str
Ordered list of output variables names of the *NumericalMathFunction*.
If it is not specified, default names are created for the output variables.
formulas : sequence of str
Ordered list of analytical formulas between the inputs and the outputs.
The *NumericalMathFunction* is defined by *ouputs = formulas(inputs)*.
inputString : str
Description of the *NumericalMathFunction*'s input.
outputString : str
Description of the *NumericalMathFunction*'s output.
formulaString : str
Analytical formula of the *NumericalMathFunction*.
The *NumericalMathFunction* is defined by
*ouputString = formulaString(inputString)*.
Available functions:
- sin
- cos
- tan
- asin
- acos
- atan
- sinh
- cosh
- tanh
- asinh
- acosh
- atanh
- log2
- log10
- log
- ln
- lngamma
- gamma
- exp
- erf
- erfc
- sqrt
- cbrt
- besselJ0
- besselJ1
- besselY0
- besselY1
- sign
- rint
- abs
- floor
- ceil
- trunc
- round
f,g : two :class:`~openturns.NumericalMathFunction`
The *NumericalMathFunction* is the composition function :math:`f\\\\circ g`.
functionCollection : list of :class:`~openturns.NumericalMathFunction`
Collection of several *NumericalMathFunction*.
scalarCoefficientColl : sequence of float
Collection of scalar weights.
scalarFunctionCollection : list of :class:`~openturns.NumericalMathFunction`
Collection of several scalar *NumericalMathFunction*.
vectorCoefficientColl : 2-d sequence of float
Collection of vectorial weights.
function : :class:`~openturns.NumericalMathFunction`
Function from which another function is created.
comparisonOperator : :class:`~openturns.ComparisonOperator`
Comparison operator.
threshold : float
Threshold from which values are compared.
indices : list of ints
Indices of the set variables.
If *referencePoint* is not mentioned, the variables are set to a null
value. Otherwise, the variables are set to the *referencePoint*'s values.
parametersSet : bool
If *True*, the set variables are the ones referenced in *indices*.
Otherwise, the variables are the ones referenced in the complementary
vector of *indices*.
referencePoint : sequence of float
If not *referencePoint* take a null vector.
inputSample : 2-d sequence of float
Values of the inputs.
outputSample : 2-d sequence of float
Values of the outputs.
Examples
--------
Create a *NumericalMathFunction* from a list of analytical formulas and
descriptions of the inputs and the outputs :
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x0', 'x1'], ['y0', 'y1'],
... ['x0 + x1', 'x0 - x1'])
>>> print(f([1, 2]))
[3,-1]
Create a *NumericalMathFunction* from strings:
>>> import openturns as ot
>>> f = ot.NumericalMathFunction('x', '2.0*sqrt(x)', 'y')
>>> print(f(([16],[4])))
[ y ]
0 : [ 8 ]
1 : [ 4 ]
Create a *NumericalMathFunction* from a Python function:
>>> def a_function(X):
... return [X[0] + X[1]]
>>> f = ot.PythonFunction(2, 1, a_function)
>>> print(f(((10, 5),(6, 7))))
[ y0 ]
0 : [ 15 ]
1 : [ 13 ]
See :class:`~openturns.PythonFunction` for further details.
Create a *NumericalMathFunction* from another *NumericalMathFunction*:
>>> f = ot.NumericalMathFunction(ot.Description.BuildDefault(4, 'x'),
... ['x0', 'x0 + x1', 'x0 + x2 + x3'])
Then create another function by setting x1=0 and x3=0:
>>> g = ot.NumericalMathFunction(f, [3, 1], True)
>>> print(g.getInputDescription())
[x0,x2]
>>> print(g.getOutputDescription())
[y0,y1,y2]
>>> print(g((1, 2)))
[1,1,3]
Or by setting x1=4 and x3=10:
>>> g = ot.NumericalMathFunction(f, [3, 1], [6, 4, 5, 10], True)
>>> print(g((1, 2)))
[1,5,13]
Or by setting x0=6 and x2=5:
>>> g = ot.NumericalMathFunction(f, [3, 1], [6, 4, 5, 10], False)
>>> print(g.getInputDescription())
[x3,x1]
>>> print(g((1, 2)))
[6,8,12]
Create a *NumericalMathFunction* from another *NumericalMathFunction*
and by using a comparison operator:
>>> analytical = ot.NumericalMathFunction(['x0','x1'], ['y'], ['x0 + x1'])
>>> indicator = ot.NumericalMathFunction(analytical, ot.Less(), 0.0)
>>> print(indicator([2, 3]))
[0]
>>> print(indicator([2, -3]))
[1]
Create a *NumericalMathFunction* from a collection of functions:
>>> functions = list()
>>> functions.append(ot.NumericalMathFunction(['x1', 'x2', 'x3'], ['y1', 'y2'],
... ['x1^2 + x2', 'x1 + x2 + x3']))
>>> functions.append(ot.NumericalMathFunction(['x1', 'x2', 'x3'], ['y1', 'y2'],
... ['x1 + 2 * x2 + x3', 'x1 + x2 - x3']))
>>> myFunction = ot.NumericalMathFunction(functions)
>>> print(myFunction([1., 2., 3.]))
[3,6,8,0]
Create a *NumericalMathFunction* which is the linear combination *linComb*
of the functions defined in *functionCollection* with scalar weights
defined in *scalarCoefficientColl*:
:math:`functionCollection = (f_1, \\\\hdots, f_N)`
where :math:`\\\\forall 1 \\\\leq i \\\\leq N, \\\\, f_i: \\\\Rset^n \\\\rightarrow \\\\Rset^{p}`
and :math:`scalarCoefficientColl = (c_1, \\\\hdots, c_N) \\\\in \\\\Rset^N`
then the linear combination is:
.. math::
linComb: \\\\left|\\\\begin{array}{rcl}
\\\\Rset^n & \\\\rightarrow & \\\\Rset^{p} \\\\\\\\
\\\\vect{X} & \\\\mapsto & \\\\displaystyle \\\\sum_i c_if_i (\\\\vect{X})
\\\\end{array}\\\\right.
>>> myFunction2 = ot.NumericalMathFunction(functions, [2., 4.])
>>> print(myFunction2([1., 2., 3.]))
[38,12]
Create a *NumericalMathFunction* which is the linear combination
*vectLinComb* of the scalar functions defined in
*scalarFunctionCollection* with vectorial weights defined in
*vectorCoefficientColl*:
If :math:`scalarFunctionCollection = (f_1, \\\\hdots, f_N)`
where :math:`\\\\forall 1 \\\\leq i \\\\leq N, \\\\, f_i: \\\\Rset^n \\\\rightarrow \\\\Rset`
and :math:`vectorCoefficientColl = (\\\\vect{c}_1, \\\\hdots, \\\\vect{c}_N)`
where :math:`\\\\forall 1 \\\\leq i \\\\leq N, \\\\, \\\\vect{c}_i \\\\in \\\\Rset^p`
.. math::
vectLinComb: \\\\left|\\\\begin{array}{rcl}
\\\\Rset^n & \\\\rightarrow & \\\\Rset^{p} \\\\\\\\
\\\\vect{X} & \\\\mapsto & \\\\displaystyle \\\\sum_i \\\\vect{c}_if_i (\\\\vect{X})
\\\\end{array}\\\\right.
>>> functions=list()
>>> functions.append(ot.NumericalMathFunction(['x1', 'x2', 'x3'], ['y1'],
... ['x1 + 2 * x2 + x3']))
>>> functions.append(ot.NumericalMathFunction(['x1', 'x2', 'x3'], ['y1'],
... ['x1^2 + x2']))
>>> myFunction2 = ot.NumericalMathFunction(functions, [[2., 4.], [3., 1.]])
>>> print(myFunction2([1, 2, 3]))
[25,35]
Create a *NumericalMathFunction* from values of the inputs and the outputs:
>>> inputSample = [[1.0, 1.0], [2.0, 2.0]]
>>> outputSample = [[4.0], [5.0]]
>>> database = ot.NumericalMathFunction(inputSample, outputSample)
>>> x = [1.8]*database.getInputDimension()
>>> print(database(x))
[5]
Create a *NumericalMathFunction* which is the composition function
:math:`f\\\\circ g`:
>>> g = ot.NumericalMathFunction(['x1', 'x2'], ['y1', 'y2'],
... ['x1 + x2','3 * x1 * x2'])
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'], ['2 * x1 - x2'])
>>> composed = ot.NumericalMathFunction(f, g)
>>> print(composed([3, 4]))
[-22]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation
OT_NumericalMathFunction_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_GetValidFunctions_doc
"Return the list of valid functions.
Returns
-------
list_functions : :class:`~openturns.Description`
List of the functions we can use within OpenTURNS.
Examples
--------
>>> import openturns as ot
>>> print(ot.NumericalMathFunction().GetValidFunctions()[0:2])
[sin(arg) -> sine function,cos(arg) -> cosine function]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::GetValidFunctions
OT_NumericalMathFunction_GetValidFunctions_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_GetValidConstants_doc
"Return the list of valid constants.
Returns
-------
list_constants : :class:`~openturns.Description`
List of the constants we can use within OpenTURNS.
Examples
--------
>>> import openturns as ot
>>> print(ot.NumericalMathFunction().GetValidConstants()[0:2])
[_e -> Euler's constant (2.71828...),_pi -> Pi constant (3.14159...)]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::GetValidConstants
OT_NumericalMathFunction_GetValidConstants_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_GetValidOperators_doc
"Return the list of valid operators.
Returns
-------
list_operators : :class:`~openturns.Description`
List of the operators we can use within OpenTURNS.
Examples
--------
>>> import openturns as ot
>>> print(ot.NumericalMathFunction().GetValidOperators()[0:2])
[= -> assignement, can only be applied to variable names (priority -1),and -> logical and (priority 1)]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::GetValidOperators
OT_NumericalMathFunction_GetValidOperators_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_enableCache_doc
"Enable the cache mechanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::enableCache
OT_NumericalMathFunction_enableCache_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_disableCache_doc
"Disable the cache mechanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::disableCache
OT_NumericalMathFunction_disableCache_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_clearCache_doc
"Empty the content of the cache."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::clearCache
OT_NumericalMathFunction_clearCache_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_isCacheEnabled_doc
"Test whether the cache mechanism is enabled or not.
Returns
-------
isCacheEnabled : bool
Flag telling whether the cache mechanism is enabled.
It is disabled by default."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::isCacheEnabled
OT_NumericalMathFunction_isCacheEnabled_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getCacheHits_doc
"Accessor to the number of computations saved thanks to the cache mecanism.
Returns
-------
cacheHits : int
Integer that counts the number of computations saved thanks to the cache
mecanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getCacheHits
OT_NumericalMathFunction_getCacheHits_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getCacheInput_doc
"Accessor to all the input numerical points stored in the cache mecanism.
Returns
-------
cacheInput : :class:`~openturns.NumericalSample`
All the input numerical points stored in the cache mecanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getCacheInput
OT_NumericalMathFunction_getCacheInput_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getCacheOutput_doc
"Accessor to all the output numerical points stored in the cache mecanism.
Returns
-------
cacheInput : :class:`~openturns.NumericalSample`
All the output numerical points stored in the cache mecanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getCacheOutput
OT_NumericalMathFunction_getCacheOutput_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_addCacheContent_doc
"Add input numerical points and associated output to the cache.
Parameters
----------
input_sample : 2-d sequence of float
Input numerical points to be added to the cache.
output_sample : 2-d sequence of float
Output numerical points associated with the input_sample to be added to the
cache."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::addCacheContent
OT_NumericalMathFunction_addCacheContent_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_enableHistory_doc
"Enable the history mechanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::enableHistory
OT_NumericalMathFunction_enableHistory_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_disableHistory_doc
"Disable the history mechanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::disableHistory
OT_NumericalMathFunction_disableHistory_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_clearHistory_doc
"Empty the content of the history."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::clearHistory
OT_NumericalMathFunction_clearHistory_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_isHistoryEnabled_doc
"Test whether the history mechanism is enabled or not.
Returns
-------
isHistoryEnabled : bool
Flag telling whether the history mechanism is enabled.
It is disabled by default."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::isHistoryEnabled
OT_NumericalMathFunction_isHistoryEnabled_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getHistoryInput_doc
"Accessor to the history of the input values.
Returns
-------
input_history : :class:`~openturns.NumericalSample`
All the input numerical points stored in the history mecanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getHistoryInput
OT_NumericalMathFunction_getHistoryInput_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getHistoryOutput_doc
"Accessor to the history of the output values.
Returns
-------
output_history : :class:`~openturns.NumericalSample`
All the output numerical points stored in the history mecanism."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getHistoryOutput
OT_NumericalMathFunction_getHistoryOutput_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getCallsNumber_doc
"Accessor to the number of times the function has been called.
Returns
-------
calls_number : int
Integer that counts the number of times the function has been called
since its creation."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getCallsNumber
OT_NumericalMathFunction_getCallsNumber_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getEvaluationCallsNumber_doc
"Accessor to the number of times the function has been called.
Returns
-------
evaluation_calls_number : int
Integer that counts the number of times the function has been called
since its creation."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getEvaluationCallsNumber
OT_NumericalMathFunction_getEvaluationCallsNumber_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getGradientCallsNumber_doc
"Accessor to the number of times the gradient of the function has been called.
Returns
-------
gradient_calls_number : int
Integer that counts the number of times the gradient of the
NumericalMathFunction has been called since its creation.
Note that if the gradient is implemented by a finite difference method,
the gradient calls number is equal to 0 and the different calls are
counted in the evaluation calls number."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getGradientCallsNumber
OT_NumericalMathFunction_getGradientCallsNumber_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getHessianCallsNumber_doc
"Accessor to the number of times the hessian of the function has been called.
Returns
-------
hessian_calls_number : int
Integer that counts the number of times the hessian of the
NumericalMathFunction has been called since its creation.
Note that if the hessian is implemented by a finite difference method,
the hessian calls number is equal to 0 and the different calls are counted
in the evaluation calls number."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getHessianCallsNumber
OT_NumericalMathFunction_getHessianCallsNumber_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getMarginal_doc
"Accessor to marginal.
Parameters
----------
indices : int or list of ints
Set of indices for which the marginal is extracted.
Returns
-------
marginal : :class:`~openturns.NumericalMathFunction`
Function corresponding to either :math:`f_i` or
:math:`(f_i)_{i \\\\in indices}`, with :math:`f:\\\\Rset^n \\\\rightarrow \\\\Rset^p`
and :math:`f=(f_0 , \\\\dots, f_{p-1})`."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getMarginal
OT_NumericalMathFunction_getMarginal_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getImplementation_doc
"Accessor to the evaluation, gradient and hessian functions.
Returns
-------
function : :class:`~openturns.NumericalMathFunctionImplementation`
The evaluation, gradient and hessian function.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getImplementation())
input : [x1,x2]
output : [y]
evaluation : 2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6
gradient :
| d(y) / d(x1) = (1)+(4*x1)+((-4*((x2)*(sin(x1)))))
| d(y) / d(x2) = (8)+((4*(cos(x1))))
hessian :
| d^2(y) / d(x1)^2 = (4)+((-4*((x2)*(cos(x1)))))
| d^2(y) / d(x2)d(x1) = (-4*(sin(x1)))
| d^2(y) / d(x2)^2 = 0"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getImplementation
OT_NumericalMathFunction_getImplementation_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getEvaluation_doc
"Accessor to the evaluation function.
Returns
-------
function : :class:`~openturns.NumericalMathEvaluationImplementation`
The evaluation function.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getEvaluation())
[x1,x2]->[2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getEvaluation
OT_NumericalMathFunction_getEvaluation_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getGradient_doc
"Accessor to the gradient function.
Returns
-------
gradient : :class:`~openturns.NumericalMathGradientImplementation`
The gradient function."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getGradient
OT_NumericalMathFunction_getGradient_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getHessian_doc
"Accessor to the hessian function.
Returns
-------
hessian : :class:`~openturns.NumericalMathHessianImplementation`
The hessian function."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getHessian
OT_NumericalMathFunction_getHessian_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_setEvaluation_doc
"Accessor to the evaluation function.
Parameters
----------
function : :class:`~openturns.NumericalMathEvaluationImplementation`
The evaluation function."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::setEvaluation
OT_NumericalMathFunction_setEvaluation_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_setGradient_doc
"Accessor to the gradient function.
Parameters
----------
gradient_function : :class:`~openturns.NumericalMathGradientImplementation`
The gradient function.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> f.setGradient(ot.CenteredFiniteDifferenceGradient(
... ot.ResourceMap.GetAsNumericalScalar('CenteredFiniteDifferenceGradient-DefaultEpsilon'),
... f.getEvaluation()))"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::setGradient
OT_NumericalMathFunction_setGradient_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_setHessian_doc
"Accessor to the hessian function.
Parameters
----------
hessian_function : :class:`~openturns.NumericalMathHessianImplementation`
The hessian function.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> f.setHessian(ot.CenteredFiniteDifferenceHessian(
... ot.ResourceMap.GetAsNumericalScalar('CenteredFiniteDifferenceHessian-DefaultEpsilon'),
... f.getEvaluation()))"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::setHessian
OT_NumericalMathFunction_setHessian_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_gradient_doc
"Return the Jacobian transposed matrix of the function at a point.
Parameters
----------
point : sequence of float
Point where the Jacobian transposed matrix is calculated.
Returns
-------
gradient : :class:`~openturns.Matrix`
The Jacobian transposed matrix of the function at *point*.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y','z'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2'])
>>> print(f.gradient([3.14, 4]))
[[ 13.5345 1 ]
[ 4.00001 1 ]]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::gradient
OT_NumericalMathFunction_gradient_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_hessian_doc
"Return the hessian of the function at a point.
Parameters
----------
point : sequence of float
Point where the hessian of the function is calculated.
Returns
-------
hessian : :class:`~openturns.SymmetricTensor`
Hessian of the function at *point*.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y','z'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2'])
>>> print(f.hessian([3.14, 4]))
sheet #0
[[ 20 -0.00637061 ]
[ -0.00637061 0 ]]
sheet #1
[[ 0 0 ]
[ 0 0 ]]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::hessian
OT_NumericalMathFunction_hessian_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getDescription_doc
"Accessor to the description of the inputs and outputs.
Returns
-------
description : :class:`~openturns.Description`
Description of the inputs and the outputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getDescription())
[x1,x2,y]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getDescription
OT_NumericalMathFunction_getDescription_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_setDescription_doc
"Accessor to the description of the inputs and outputs.
Parameters
----------
description : sequence of str
Description of the inputs and the outputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getDescription())
[x1,x2,y]
>>> f.setDescription(['a','b','y'])
>>> print(f.getDescription())
[a,b,y]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::setDescription
OT_NumericalMathFunction_setDescription_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getInputDescription_doc
"Accessor to the description of the inputs.
Returns
-------
description : :class:`~openturns.Description`
Description of the inputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getInputDescription())
[x1,x2]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getInputDescription
OT_NumericalMathFunction_getInputDescription_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getOutputDescription_doc
"Accessor to the description of the outputs.
Returns
-------
description : :class:`~openturns.Description`
Description of the outputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getOutputDescription())
[y]"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getOutputDescription
OT_NumericalMathFunction_getOutputDescription_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getInputDimension_doc
"Accessor to the number of the inputs.
Returns
-------
number_inputs : int
Number of inputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getInputDimension())
2"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getInputDimension
OT_NumericalMathFunction_getInputDimension_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getOutputDimension_doc
"Accessor to the number of the outputs.
Returns
-------
number_outputs : int
Number of outputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.NumericalMathFunction(['x1', 'x2'], ['y'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getOutputDimension())
1"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getOutputDimension
OT_NumericalMathFunction_getOutputDimension_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getParameterDimension_doc
"Accessor to the dimension of the parameter.
Returns
-------
parameterDimension : int
Dimension of the parameter."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getParameterDimension
OT_NumericalMathFunction_getParameterDimension_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_draw_doc
"Draw the output of function as a :class:`~openturns.Graph`.
Available usages:
draw(*inputMarg, outputMarg, CP, xiMin, xiMax, ptNb*)
draw(*firstInputMarg, secondInputMarg, outputMarg, CP, xiMin_xjMin, xiMax_xjMax, ptNbs*)
draw(*xiMin, xiMax, ptNb*)
draw(*xiMin_xjMin, xiMax_xjMax, ptNbs*)
Parameters
----------
outputMarg, inputMarg : int, :math:`outputMarg, inputMarg \\\\geq 0`
*outputMarg* is the index of the marginal to draw as a function of the marginal
with index *inputMarg*.
firstInputMarg, secondInputMarg : int, :math:`firstInputMarg, secondInputMarg \\\\geq 0`
In the 2D case, the marginal *outputMarg* is drawn as a function of the
two marginals with indexes *firstInputMarg* and *secondInputMarg*.
CP : sequence of float
Central point.
xiMin, xiMax : float
Define the interval where the curve is plotted.
xiMin_xjMin, xiMax_xjMax : sequence of float of dimension 2.
In the 2D case, define the intervals where the curves are plotted.
ptNb : int :math:`ptNb > 0` or list of ints of dimension 2 :math:`ptNb_k > 0, k=1,2`
The number of points to draw the curves.
Notes
-----
We note :math:`f: \\\\Rset^n \\\\rightarrow \\\\Rset^p`
where :math:`\\\\vect{x} = (x_1, \\\\dots, x_n)` and
:math:`f(\\\\vect{x}) = (f_1(\\\\vect{x}), \\\\dots,f_p(\\\\vect{x}))`,
with :math:`n\\\\geq 1` and :math:`p\\\\geq 1`.
- In the first usage:
Draws graph of the given 1D *outputMarg* marginal
:math:`f_k: \\\\Rset^n \\\\rightarrow \\\\Rset` as a function of the given 1D *inputMarg*
marginal with respect to the variation of :math:`x_i` in the interval
:math:`[x_i^{min}, x_i^{max}]`, when all the other components of
:math:`\\\\vect{x}` are fixed to the corresponding ones of the central point *CP*.
Then OpenTURNS draws the graph:
:math:`t\\\\in [x_i^{min}, x_i^{max}] \\\\mapsto f_k(CP_1, \\\\dots, CP_{i-1}, t, CP_{i+1} \\\\dots, CP_n)`.
- In the second usage:
Draws the iso-curves of the given *outputMarg* marginal :math:`f_k` as a
function of the given 2D *firstInputMarg* and *secondInputMarg* marginals
with respect to the variation of :math:`(x_i, x_j)` in the interval
:math:`[x_i^{min}, x_i^{max}] \\\\times [x_j^{min}, x_j^{max}]`, when all the
other components of :math:`\\\\vect{x}` are fixed to the corresponding ones of the
central point *CP*. Then OpenTURNS draws the graph:
:math:`(t,u) \\\\in [x_i^{min}, x_i^{max}] \\\\times [x_j^{min}, x_j^{max}] \\\\mapsto f_k(CP_1, \\\\dots, CP_{i-1}, t, CP_{i+1}, \\\\dots, CP_{j-1}, u, CP_{j+1} \\\\dots, CP_n)`.
- In the third usage:
The same as the first usage but only for function :math:`f: \\\\Rset \\\\rightarrow \\\\Rset`.
- In the fourth usage:
The same as the second usage but only for function :math:`f: \\\\Rset^2 \\\\rightarrow \\\\Rset`.
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> f = ot.NumericalMathFunction('x', 'sin(2*_pi*x)*exp(-x^2/2)', 'y')
>>> graph = f.draw(-1.2, 1.2, 100)
>>> View(graph).show()"
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::draw
OT_NumericalMathFunction_draw_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_getParameter_doc
"Accessor to the parameter.
Returns
-------
parameter : :class:`~openturns.NumericalPointWithDescription`
The parameter values."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::getParameter
OT_NumericalMathFunction_getParameter_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_setParameter_doc
"Accessor to the parameter.
Parameters
----------
parameter : :class:`~openturns.NumericalPointWithDescription`
The parameter values."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::setParameter
OT_NumericalMathFunction_setParameter_doc
// ---------------------------------------------------------------------
%define OT_NumericalMathFunction_parameterGradient_doc
"Accessor to the gradient against the parameter.
Returns
-------
gradient : :class:`~openturns.Matrix`
The gradient."
%enddef
%feature("docstring") OT::NumericalMathFunctionImplementation::parameterGradient
OT_NumericalMathFunction_parameterGradient_doc
|