This file is indexed.

/usr/include/openturns/swig/NumericalPoint_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
%feature("docstring") OT::NumericalPoint
"Real vector.

Parameters
----------
dimension : int, :math:`n > 0`, optional
    The number of components.
value : float, optional
    The components value.
    Default creates a null vector.

Examples
--------
Create a NumericalPoint

>>> import openturns as ot
>>> x = ot.NumericalPoint(3, 1.)
>>> x
class=NumericalPoint name=Unnamed dimension=3 values=[1,1,1]

Get or set terms

>>> print(x[0])
1.0
>>> x[0] = 0.
>>> print(x[0])
0.0
>>> print(x[:2])
[0,1]

Create a NumericalPoint from a flat (1d) array, list or tuple

>>> import numpy as np
>>> y = ot.NumericalPoint((0., 1., 2.))
>>> y = ot.NumericalPoint(range(3))
>>> y = ot.NumericalPoint(np.arange(3))

and back

>>> np.array(y)
array([ 0.,  1.,  2.])

Addition, subtraction (with compatible dimensions)

>>> print(x + y)
[0,2,3]
>>> print(x - y)
[0,0,-1]

Multiplication, division with a scalar

>>> print(x * 3.)
[0,3,3]
>>> print(x / 3.)
[0,0.333333,0.333333]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::add
"Appends a scalar component (in-place).

Parameters
----------
value : float
    The component to append.

Examples
--------
>>> import openturns as ot
>>> x = ot.NumericalPoint(2)
>>> x.add(1.)
>>> print(x)
[0,0,1]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::clear
"Resets the vector to zero dimension.

Examples
--------
>>> import openturns as ot
>>> x = ot.NumericalPoint(2)
>>> x.clear()
>>> x
class=NumericalPoint name=Unnamed dimension=0 values=[]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::getDescription
"Accessor to the componentwise description.

Returns
-------
description : :class:`~openturns.Description`
    Description of the components.

See Also
--------
setDescription"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::getDimension
"Accessor to the vector's dimension.

Returns
-------
n : int
    The number of components in the vector."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::setDescription
"Accessor to the componentwise description.

Parameters
----------
description : sequence of str
    Description of the components."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::getSize
"Accessor to the vector's dimension (or size).

Returns
-------
n : int
    The number of components in the vector."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::norm
"Compute the Euclidean (L2) norm.

The Euclidean (L2) norm of a vector is defined as:

.. math::

    \\\\norm{\\\\vect{x}} = \\\\norm{\\\\vect{x}}_2
                    = \\\\sqrt{\\\\sum_{i=1}^n x_i^2}

Returns
-------
norm : int
    The vector's Euclidean norm.

Examples
--------
>>> import openturns as ot
>>> x = ot.NumericalPoint([1., 2., 3.])
>>> x.norm()
3.741657..."

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::norm1
"Compute the L1 norm.

The L1 norm of a vector is defined as:

.. math::

    \\\\norm{\\\\vect{x}}_1 = \\\\sum_{i=1}^n |x_i|

Returns
-------
norm : int
    The vector's L1 norm.

Examples
--------
>>> import openturns as ot
>>> x = ot.NumericalPoint([1., 2., 3.])
>>> x.norm1()
6.0"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::normSquare
"Compute the squared Euclidean norm.

Returns
-------
norm : int
    The vector's squared Euclidean norm.

See Also
--------
norm

Examples
--------
>>> import openturns as ot
>>> x = ot.NumericalPoint([1., 2., 3.])
>>> x.normSquare()
14.0"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::normalize
"Compute the normalized vector with respect to its Euclidean norm.

Returns
-------
normalized_vector : int
    The normalized vector with respect to its Euclidean norm.

See Also
--------
norm

Raises
------
RuntimeError : If the Euclidean norm is zero.

Examples
--------
>>> import openturns as ot
>>> x = ot.NumericalPoint([1., 2., 3.])
>>> print(x.normalize())
[0.267261,0.534522,0.801784]"

// ---------------------------------------------------------------------

%feature("docstring") OT::NumericalPoint::normalizeSquare
"Compute the normalized vector with respect to its squared Euclidean norm.

Returns
-------
normalized_vector : int
    The normalized vector with respect to its squared Euclidean norm.

See Also
--------
normSquare

Raises
------
RuntimeError : If the squared Euclidean norm is zero.

Examples
--------
>>> import openturns as ot
>>> x = ot.NumericalPoint([1., 2., 3.])
>>> print(x.normalizeSquare())
[0.0714286,0.285714,0.642857]"