/usr/include/openturns/swig/ProcessImplementation_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | %define OT_Process_doc
"Base class for stochastic processes.
Notes
-----
The Process class enables to model a stochastic process.
A multivariate stochastic process :math:`X` of dimension :math:`d` is defined
by:
.. math::
X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d
where :math:`\\\\omega \\\\in \\\\Omega` is an event, :math:`\\\\cD` is a domain of
:math:`\\\\Rset^n` discretized on the mesh :math:`\\\\cM`, :math:`\\\\vect{t}\\\\in \\\\cD` is
a multivariate index and :math:`X(\\\\omega, \\\\vect{t}) \\\\in \\\\Rset^d`.
A realization of the process :math:`X`, for a given :math:`\\\\omega \\\\in \\\\Omega`
is :math:`X(\\\\omega): \\\\cD \\\\mapsto \\\\Rset^d` defined by:
.. math::
X(\\\\omega)(\\\\vect{t}) = X(\\\\omega, \\\\vect{t})
:math:`X_{\\\\vect{t}}: \\\\Omega \\\\rightarrow \\\\Rset^d` is the random variable at
index :math:`\\\\vect{t} \\\\in \\\\cD` defined by:
.. math::
X_{\\\\vect{t}}(\\\\omega) = X(\\\\omega, \\\\vect{t})
A Process object can be created only through its derived classes:
:class:`~openturns.SpectralNormalProcess`,
:class:`~openturns.TemporalNormalProcess`,
:class:`~openturns.CompositeProcess`, :class:`~openturns.ARMA`,
:class:`~openturns.RandomWalk`, :class:`~openturns.FunctionalBasisProcess`
and :class:`~openturns.WhiteNoise`."
%enddef
%feature("docstring") OT::ProcessImplementation
OT_Process_doc
// ---------------------------------------------------------------------
%define OT_Process_getContinuousRealization_doc
"Get a continuous realization.
Returns
-------
realization : :class:`~openturns.NumericalMathFunction`
According to the process, the continuous realizations are built:
- either using a dedicated functional model if it exists: e.g. a functional
basis process.
- or using an interpolation from a discrete realization of the process on
:math:`\\\\cM`: in dimension :math:`d=1`, a linear interpolation and in
dimension :math:`d \\\\geq 2`, a piecewise constant function (the value at a
given position is equal to the value at the nearest vertex of the mesh of
the process)."
%enddef
%feature("docstring") OT::ProcessImplementation::getContinuousRealization
OT_Process_getContinuousRealization_doc
// ---------------------------------------------------------------------
%define OT_Process_getDescription_doc
"Get the description of the process.
Returns
-------
description : :class:`~openturns.Description`
Description of the process."
%enddef
%feature("docstring") OT::ProcessImplementation::getDescription
OT_Process_getDescription_doc
// ---------------------------------------------------------------------
%define OT_Process_setDescription_doc
"Set the description of the process.
Parameters
----------
description : sequence of str
Description of the process."
%enddef
%feature("docstring") OT::ProcessImplementation::setDescription
OT_Process_setDescription_doc
// ---------------------------------------------------------------------
%define OT_Process_getDimension_doc
"Get the dimension of the domain :math:`\\\\cD`.
Returns
-------
d : int
Dimension of the domain :math:`\\\\cD`."
%enddef
%feature("docstring") OT::ProcessImplementation::getDimension
OT_Process_getDimension_doc
// ---------------------------------------------------------------------
%define OT_Process_getFuture_doc
"Prediction of the :math:`N` future iterations of the process.
Parameters
----------
stepNumber : int, :math:`N \\\\geq 0`
Number of future steps.
size : int, :math:`size \\\\geq 0`, optional
Number of futures needed. Default is 1.
Returns
-------
prediction : :class:`~openturns.ProcessSample` or :class:`~openturns.TimeSeries`
:math:`N` future iterations of the process.
If :math:`size = 1`, *prediction* is a :class:`~openturns.TimeSeries`.
Otherwise, it is a :class:`~openturns.ProcessSample`."
%enddef
%feature("docstring") OT::ProcessImplementation::getFuture
OT_Process_getFuture_doc
// ---------------------------------------------------------------------
%define OT_Process_getMarginal_doc
"Get the :math:`k^{th}` marginal of the random process.
Parameters
----------
k : int or list of ints :math:`0 \\\\leq k < d`
Index of the marginal(s) needed.
Returns
-------
marginals : :class:`~openturns.Process`
Process defined with marginal(s) of the random process."
%enddef
%feature("docstring") OT::ProcessImplementation::getMarginal
OT_Process_getMarginal_doc
// ---------------------------------------------------------------------
%define OT_Process_getMesh_doc
"Get the mesh.
Returns
-------
mesh : :class:`~openturns.Mesh`
Mesh over which the domain :math:`\\\\cD` is discretized."
%enddef
%feature("docstring") OT::ProcessImplementation::getMesh
OT_Process_getMesh_doc
// ---------------------------------------------------------------------
%define OT_Process_setMesh_doc
"Set the mesh.
Parameters
----------
mesh : :class:`~openturns.Mesh`
Mesh over which the domain :math:`\\\\cD` is discretized."
%enddef
%feature("docstring") OT::ProcessImplementation::setMesh
OT_Process_setMesh_doc
// ---------------------------------------------------------------------
%define OT_Process_getMeshDimension_doc
"Get the dimension of the mesh.
Returns
-------
n : int
Dimension :math:`n` of the mesh."
%enddef
%feature("docstring") OT::ProcessImplementation::getMeshDimension
OT_Process_getMeshDimension_doc
// ---------------------------------------------------------------------
%define OT_Process_getRealization_doc
"Get a realization of the process.
Returns
-------
realization : :class:`~openturns.Field`
Contains a mesh over which the process is discretized and the values of the
process at the vertices of the mesh."
%enddef
%feature("docstring") OT::ProcessImplementation::getRealization
OT_Process_getRealization_doc
// ---------------------------------------------------------------------
%define OT_Process_getSample_doc
"Get :math:`n` realizations of the process.
Parameters
----------
n : int, :math:`n \\\\geq 0`
Number of realizations of the process needed.
Returns
-------
processSample : :class:`~openturns.ProcessSample`
:math:`n` realizations of the random process. A process sample is a
collection of fields which share the same mesh :math:`\\\\cM \\\\in \\\\Rset^n`."
%enddef
%feature("docstring") OT::ProcessImplementation::getSample
OT_Process_getSample_doc
// ---------------------------------------------------------------------
%define OT_Process_getSpatialDimension_doc
"Get the dimension of the domain :math:`\\\\cD`.
Returns
-------
n : int
Dimension of the domain :math:`\\\\cD`: :math:`n`."
%enddef
%feature("docstring") OT::ProcessImplementation::getSpatialDimension
OT_Process_getSpatialDimension_doc
// ---------------------------------------------------------------------
%define OT_Process_getTimeGrid_doc
"Get the time grid of observation of the process.
Returns
-------
timeGrid : :class:`~openturns.RegularGrid`
Time grid of a process when the mesh associated to the
process can be interpreted as a :class:`~openturns.RegularGrid`. We check
if the vertices of the mesh are scalar and are regularly spaced in
:math:`\\\\Rset` but we don't check if the connectivity of the mesh is conform
to the one of a regular grid (without any hole and composed of ordered
instants)."
%enddef
%feature("docstring") OT::ProcessImplementation::getTimeGrid
OT_Process_getTimeGrid_doc
// ---------------------------------------------------------------------
%define OT_Process_setTimeGrid_doc
"Set the time grid of observation of the process.
Returns
-------
timeGrid : :class:`~openturns.RegularGrid`
Time grid of observation of the process when the mesh associated to the
process can be interpreted as a :class:`~openturns.RegularGrid`. We check
if the vertices of the mesh are scalar and are regularly spaced in
:math:`\\\\Rset` but we don't check if the connectivity of the mesh is conform
to the one of a regular grid (without any hole and composed of ordered
instants)."
%enddef
%feature("docstring") OT::ProcessImplementation::setTimeGrid
OT_Process_setTimeGrid_doc
// ---------------------------------------------------------------------
%define OT_Process_isComposite_doc
"Test whether the process is composite or not.
Returns
-------
isComposite : bool
*True* if the process is composite (built upon a function and a process)."
%enddef
%feature("docstring") OT::ProcessImplementation::isComposite
OT_Process_isComposite_doc
// ---------------------------------------------------------------------
%define OT_Process_isNormal_doc
"Test whether the process is normal or not.
Returns
-------
isNormal : bool
*True* if the process is normal.
Notes
-----
A stochastic process is normal if all its finite dimensional joint
distributions are normal, which means that for all :math:`k \\\\in \\\\Nset` and
:math:`I_k \\\\in \\\\Nset^*`, with :math:`cardI_k=k`, there is
:math:`\\\\vect{m}_1, \\\\dots, \\\\vect{m}_k \\\\in \\\\Rset^d` and
:math:`\\\\mat{C}_{1,\\\\dots,k}\\\\in\\\\mathcal{M}_{kd,kd}(\\\\Rset)` such that:
.. math::
\\\\Expect{\\\\exp\\\\left\\\\{i\\\\Tr{\\\\vect{X}}_{I_k} \\\\vect{U}_{k} \\\\right\\\\}} =
\\\\exp{\\\\left\\\\{i\\\\Tr{\\\\vect{U}}_{k}\\\\vect{M}_{k}-\\\\frac{1}{2}\\\\Tr{\\\\vect{U}}_{k}\\\\mat{C}_{1,\\\\dots,k}\\\\vect{U}_{k}\\\\right\\\\}}
where :math:`\\\\Tr{\\\\vect{X}}_{I_k} = (\\\\Tr{X}_{\\\\vect{t}_1}, \\\\hdots, \\\\Tr{X}_{\\\\vect{t}_k})`,
:math:`\\\\\\\\Tr{vect{U}}_{k} = (\\\\Tr{\\\\vect{u}}_{1}, \\\\hdots, \\\\Tr{\\\\vect{u}}_{k})` and
:math:`\\\\Tr{\\\\vect{M}}_{k} = (\\\\Tr{\\\\vect{m}}_{1}, \\\\hdots, \\\\Tr{\\\\vect{m}}_{k})` and
:math:`\\\\mat{C}_{1,\\\\dots,k}` is the symmetric matrix:
.. math::
\\\\mat{C}_{1,\\\\dots,k} = \\\\left(
\\\\begin{array}{cccc}
C(\\\\vect{t}_1, \\\\vect{t}_1) &C(\\\\vect{t}_1, \\\\vect{t}_2) & \\\\hdots & C(\\\\vect{t}_1, \\\\vect{t}_{k}) \\\\\\\\
\\\\hdots & C(\\\\vect{t}_2, \\\\vect{t}_2) & \\\\hdots & C(\\\\vect{t}_2, \\\\vect{t}_{k}) \\\\\\\\
\\\\hdots & \\\\hdots & \\\\hdots & \\\\hdots \\\\\\\\
\\\\hdots & \\\\hdots & \\\\hdots & C(\\\\vect{t}_{k}, \\\\vect{t}_{k})
\\\\end{array}
\\\\right)
A normal process is entirely defined by its mean function :math:`m` and its
covariance function :math:`C` (or correlation function :math:`R`)."
%enddef
%feature("docstring") OT::ProcessImplementation::isNormal
OT_Process_isNormal_doc
// ---------------------------------------------------------------------
%define OT_Process_isStationary_doc
"Test whether the process is stationary or not.
Returns
-------
isStationary : bool
*True* if the process is stationary.
Notes
-----
A process :math:`X` is stationary if its distribution is invariant by
translation: :math:`\\\\forall k \\\\in \\\\Nset`,
:math:`\\\\forall (\\\\vect{t}_1, \\\\dots, \\\\vect{t}_k) \\\\in \\\\cD`,
:math:`\\\\forall \\\\vect{h}\\\\in \\\\Rset^n`, we have:
.. math::
(X_{\\\\vect{t}_1}, \\\\dots, X_{\\\\vect{t}_k})
\\\\stackrel{\\\\mathcal{D}}{=} (X_{\\\\vect{t}_1+\\\\vect{h}}, \\\\dots, X_{\\\\vect{t}_k+\\\\vect{h}})
"
%enddef
%feature("docstring") OT::ProcessImplementation::isStationary
OT_Process_isStationary_doc
|