This file is indexed.

/usr/include/openturns/swig/ProcessSample_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
%feature("docstring") OT::ProcessSample
"Collection of fields.

Available constructors:
    ProcessSample(*mesh, K, d*)

    ProcessSample(*K, field*)

Parameters
----------
mesh : :class:`~openturns.Mesh`
    The mesh shared by all the fields in the collection.
K : int
    Number of fields in the collection.
d : int
    Dimension  of the the values of the field.
field : :class:`~openturns.Field`
    One field.

Notes
-----
A :class:`~openturns.ProcessSample` stores a sample of fields.
We note `K` the number of fields contained in the process sample and `d` the dimension of the values associated to each vertex of the common mesh :math:`\\\\cM \\\\in \\\\Rset^n`.

These fields can be generated by a stochastic process.

- In the first usage, we fix the common mesh with `mesh`, the number of fields contained in the sample with `K` and the dimension of the values with `d`. The values of the fields are by default fixed to zero.

- In the second usage, the  collection of fields is filled with `K` copies of the given field `field`.

We note :math:`\\\\vect{x}_i^k \\\\in \\\\Rset^d` the value of the field `k` at the vertex `i`. We note `N` the number of vertices of :math:`\\\\cM`, with :math:`0 \\\\leq i \\\\leq N-1` and :math:`1 \\\\leq k \\\\leq K`.

Examples
--------
Create a bi dimensional mesh as a box:

>>> import openturns as ot
>>> myIndices = [100,40]
>>> myMesher = ot.IntervalMesher(myIndices)
>>> lowerBound = [0., 0.]
>>> upperBound = [2., 1.]
>>> myInterval = ot.Interval(lowerBound, upperBound)
>>> myMesh = myMesher.build(myInterval)

Create a second order normal porcess of dimension 3:

>>> amplitude = [5]
>>> scale = [3, 3]
>>> model = ot.ExponentialModel(myMesh.getDimension(), amplitude, scale)
>>> myProcess = ot.TemporalNormalProcess(model, myMesh)

Generate a sample of different fields:

>>> n = 10
>>> mySampleFields = myProcess.getSample(n)

Duplicate the same field:

>>> myField = myProcess.getRealization()
>>> n = 10
>>> mySampleFields2 = ot.ProcessSample(n, myField)
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::add
"Add a field to the collection.

Parameters
----------
field : :class:`~openturns.Field`
    A new field to add. 
    This field shares the same mesh and the same dimension as the other
    fields of the collection.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::computeMean
"Compute the mean field of the collection of fields.

Returns
-------
mean : :class:`~openturns.Field`
    The mean field has the same dimension `d` and the same mesh as the fields
    contained in the collection. At each vertex of the mesh, we calculate
    the mean of the values at this vertex of the `K` fields contained
    in the process sample:

.. math::

    \\\\forall i \\\\in [0,N-1], \\\\quad \\\\dfrac{1}{K} \\\\sum_{k=1}^K \\\\vect{x}_i^k
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::computeMean
"Compute the mean field of the collection of fields.

Returns
-------
mean : :class:`~openturns.Field`
    The mean field has the same dimension `d` and the same mesh as the fields
    contained in the collection. At each vertex of the mesh, we calculate the
    mean of the values at this vertex of the `K` fields contained
    in the process sample:

.. math::

    \\\\forall i \\\\in [0,N-1], \\\\quad \\\\dfrac{1}{K} \\\\sum_{k=1}^K \\\\vect{x}_i^k
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::computeSpatialMean
"Compute the spatial mean of the values of the fields.

Returns
-------
spatialMean : :class:`~openturns.NumericalSample`
    Its size is the number `K` of fields in the collection.
    Its dimension is `d`. The `k` numerical point is the spatial mean of the field `k`:

.. math::

    \\\\forall k \\\\in [1,K], \\\\quad \\\\dfrac{1}{N}\\\\sum_{i=0}^{N-1} \\\\vect{x}_i^k
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::computeTemporalMean
"Compute the temporal mean of the values of the fields.

Returns
-------
spatialMean : :class:`~openturns.NumericalSample`
    Its size is the number `K` of fields in the collection.
    Its dimension is `d`.
    The `k` numerical point is the temporal mean of the field `k`:

.. math::

    \\\\forall k \\\\in [1,K], \\\\quad \\\\dfrac{1}{N}\\\\sum_{i=0}^{N-1} \\\\vect{x}_i^k

This method can be used only when the mesh can be interpreted as a regular grid.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::computeQuantilePerComponent
"Compute the temporal mean of the values of the fields.

Parameters
----------
p : float, :math:`0 \\\\leq p \\\\leq 1`
    Order of the quantile.

Returns
-------
quantileField : :class:`~openturns.Field`
    This field has the same size and the same dimension as the fields
    of the collection. At each vertex of the mesh, we estimate the
    component-wise quantile of order `p`, using the empirical quantile.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::getSize
"Get the size of the collection of fields.

Returns
-------
K : int
    Number of fields in the collection.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::getMesh
"Get the mesh of the fields.

Returns
-------
mesh : :class:`~openturns.Mesh`
    The mesh shared by all the fields of the collection.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::getTimeGrid
"Get the time grid of the fields.

Returns
-------
mesh : :class:`~openturns.RegularGrid`
    The time grid shared by all the fields of the collection.
    Can be used only if the mesh can be interpreted as a regular time grid.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::getDimension
"Get the dimension of the values of fields.

Returns
-------
d : int
    Dimension of the values of the fields.
"

// ---------------------------------------------------------------------
%feature("docstring") OT::ProcessSample::drawMarginal
"Draw the selected field.

Parameters
----------
indice : int
    Index of the field that is drawn in the graph.

Returns
-------
graph : :class:`~openturns.Graph`
    The graph of the selected field using the `interpolate` method.
"