This file is indexed.

/usr/include/openturns/swig/ProjectionStrategyImplementation_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
%define OT_ProjectionStrategy_doc
"Base class for the evaluation strategies of the approximation coefficients.

Available constructors:
    ProjectionStrategy(*projectionStrategyImplementation*)

Parameters
----------
projectionStrategyImplementation : :class:`~openturns.ProjectionStrategy`
    A projection strategy which is a :class:`~openturns.LeastSquaresStrategy` or
    an :class:`~openturns.IntegrationStrategy`.

See also
--------
FunctionalChaosAlgorithm, LeastSquaresStrategy, IntegrationStrategy

Notes
-----
The polynomial chaos (PC) expansion allows one to obtain an explicit
representation of the random response :math:`\\\\vect{Y} = g(\\\\vect{X})` of the
model under consideration. More precisely, the response *Y* is cast as a
converging series featuring orthonormal polynomials. For computational purpose,
it is necessary though to retain a finite number of terms by truncating the
expansion using an :class:`~openturns.AdaptiveStrategy`. Then it is necessary to
estimate the PC coefficients in order to characterize *Y* . This may be achieved
using a projection strategy.

The model response is assumed to be scalar for the sake of simplicity, i.e.
:math:`\\\\vect{Y} = Y`. However the following derivations hold componentwise in
case of a vector-valued random response. Let us consider the following truncated
PC representation of the model response:

.. math::
    
    Y \\\\equiv g(\\\\vect{X}) \\\\approx \\\\sum_{k \\\\in K} a_k \\\\Psi_k \\\\circ T(\\\\vect{X})

where *K* is a non empty finite set of indices, whose cardinality is denoted
by *P* and where :math:`\\\\vect{U} = T(\\\\vect{X})`. Using the matrix notation 
:math:`\\\\vect{a} = \\\\{a_0, \\\\ldots, a_{P-1} \\\\}` and
:math:`\\\\vect{\\\\Psi}(\\\\vect{U}) = \\\\{\\\\Psi_0 (\\\\vect{U}), \\\\ldots, \\\\Psi_{P-1}(\\\\vect{U})\\\\}^{\\\\intercal}`,
the PC representation rewrites:

.. math::
    
    Y \\\\equiv g \\\\circ T^{-1}(\\\\vect{U}) \\\\approx \\\\vect{a}^{\\\\intercal} \\\\vect{\\\\Psi}(\\\\vect{U})

The coefficients may be computed by a :math:`L^2`-projection onto the PC basis
as follows:

.. math::
    
    \\\\vect{a} = \\\\argmin_{\\\\vect{b} \\\\in \\\\Rset^P} E_{\\\\mu} \\\\left[ \\\\left( g \\\\circ T^{-1}
            (\\\\vect{U}) - \\\\vect{b}^{\\\\intercal} \\\\vect{\\\\Psi}(\\\\vect{U}) \\\\right)^2 \\\\right]

This relation means that the coefficients :math:`(a_k)_{k \\\\in K}` minimize the
quadratic error between the model and the polynomial approximation. OpenTURNS
implements it through the :class:`~openturns.LeastSquaresStrategy`.

Due to the orthonormality of the PC basis, it may be shown that the previous
equation rewrites:

.. math::
    
    \\\\vect{a} = E_{\\\\mu} \\\\left[ g \\\\circ T^{-1} (\\\\vect{U}) \\\\vect{\\\\Psi}(\\\\vect{U}) \\\\right]

This relation means that :math:`a_k` is the scalar product of the model with the
:math:`k^{th}` element of the orthonormal basis :math:`(\\\\Psi_k)_{k \\\\in K}`.
OpenTURNS implements it through the :class:`~openturns.IntegrationStrategy`.

In both cases, the mean expectation :math:`E_{\\\\mu}` is approximated by a linear
quadrature formula:

.. math::
    
    E_{\\\\mu} \\\\left[ f(\\\\vect{U}) \\\\right] \\\\approx \\\\sum_{i \\\\in I} \\\\omega_i f(\\\\Xi_i)

where is a function :math:`L_1(\\\\mu)`. In the approximation of the mean expectation, the
set *I*, the points :math:`(\\\\Xi_i)_{i \\\\in I}` and the weights 
:math:`(\\\\omega_i)_{i \\\\in I}` are evaluated from different methods defined in
:class:`~openturns.WeightedExperiment`."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation
OT_ProjectionStrategy_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getCoefficients_doc
"Accessor to the coefficients.

Returns
-------
coef : :class:`~openturns.NumericalPoint`
    Coefficients of the basis."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getCoefficients
OT_ProjectionStrategy_getCoefficients_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getExperiment_doc
"Accessor to the experiments.

Returns
-------
exp : :class:`~openturns.WeightedExperiment`
    Weighted experiment."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getExperiment
OT_ProjectionStrategy_getExperiment_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getInputSample_doc
"Accessor to the input sample.

Returns
-------
X : :class:`~openturns.NumericalSample`
    Input Sample."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getInputSample
OT_ProjectionStrategy_getInputSample_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getMeasure_doc
"Accessor to the measure.

Returns
-------
m : Distribution
    Measure."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getMeasure
OT_ProjectionStrategy_getMeasure_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getOutputSample_doc
"Accessor to the output sample.

Returns
-------
Y : :class:`~openturns.NumericalSample`
    Output Sample."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getOutputSample
OT_ProjectionStrategy_getOutputSample_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getRelativeError_doc
"Accessor to the relative error.

Returns
-------
e : float
    Relative error."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getRelativeError
OT_ProjectionStrategy_getRelativeError_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getResidual_doc
"Accessor to the residual.

Returns
-------
er : float
    Residual."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getResidual
OT_ProjectionStrategy_getResidual_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_getWeights_doc
"Accessor to the weights.

Returns
-------
w : :class:`~openturns.NumericalPoint`
    Weights."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::getWeights
OT_ProjectionStrategy_getWeights_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_setExperiment_doc
"Accessor to the experiments.

Parameters
----------
exp : :class:`~openturns.WeightedExperiment`
    Weighted experiment."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::setExperiment
OT_ProjectionStrategy_setExperiment_doc

// ---------------------------------------------------------------------

%define OT_ProjectionStrategy_setMeasure_doc
"Accessor to the measure.

Parameters
----------
m : Distribution
    Measure."
%enddef
%feature("docstring") OT::ProjectionStrategyImplementation::setMeasure
OT_ProjectionStrategy_setMeasure_doc