/usr/include/openturns/swig/RandomWalkMetropolisHastings_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | %feature("docstring") OT::RandomWalkMetropolisHastings
"Random Walk Metropolis-Hastings method.
Available constructor:
RandomWalkMetropolisHastings(*prior, conditional, observations, initialState, proposal*)
RandomWalkMetropolisHastings(*prior, conditional, model, parameters, observations, initialState, proposal*)
Parameters
----------
prior : :class:`~openturns.Distribution`
Prior distribution of the parameters of the underlying Bayesian statistical
model.
conditional : :class:`~openturns.Distribution`
Required distribution to define the likelihood of the underlying Bayesian
statistical model.
model : :class:`~openturns.NumericalMathFunction`
Function required to define the likelihood.
observations : 2-d sequence of float
Observations required to define the likelihood.
initialState : sequence of float
Initial state of the Monte-Carlo Markov chain on which the Sampler is
based.
parameters : 2-d sequence of float
Parameters of the model to be fixed.
proposal : list of :class:`~openturns.Distribution`
Distributions from which the transition kernels of the
:class:`~openturns.MCMC` are defined, as explained hereafter. In the
following of this paragraph, :math:`\\\\delta \\\\sim p_j` means that the
realization :math:`\\\\delta` is obtained according to the :math:`j^{th}`
Distribution of the list *proposal* of size :math:`d`. The underlying
MCMC algorithm is a Metropolis-Hastings one which draws candidates (for the
next state of the chain) using a random walk: from the current state
:math:`\\\\vect{\\\\theta}^k`, the candidate :math:`\\\\vect{c}^k` for
:math:`\\\\vect{\\\\theta}^{k+1}` can be expressed as
:math:`\\\\vect{c}^k = \\\\vect{\\\\theta}^k +\\\\vect{\\\\delta}^k` where the
distribution of :math:`\\\\vect{\\\\delta}^k` does not depend on
:math:`\\\\vect{\\\\theta}^k`. More precisely, here, during the :math:`k^{th}`
Metropolis-Hastings iteration, only the :math:`j^{th}` component
:math:`\\\\delta_j^k` of :math:`\\\\vect{\\\\delta}^k` , with :math:`j=k \\\\mod d`, is
not zero and :math:`\\\\delta_j^k = \\\\lambda_j^k \\\\delta^k` where
:math:`\\\\lambda_j^k` is a deterministic scalar *calibration* coefficient and
where :math:`\\\\delta^k \\\\sim p_j`. Moreover, :math:`\\\\lambda_j^k = 1` by default,
but adaptive strategy based on the acceptance rate of each component can be
defined using the method :meth:`setCalibrationStrategyPerComponent`.
Notes
-----
A RandomWalkMetropolisHastings enables to carry out :class:`~openturns.MCMC`
sampling according to the preceding statements. It is important to note that
sampling one new realization comes to carrying out :math:`d` Metropolis-
Hastings iterations (such as described above): all of the components of the new
realization can differ from the corresponding components of the previous
realization. Besides, the burn-in and thinning parameters do not take into
consideration the number of MCMC iterations indeed, but the number of sampled
realizations.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> chainDim = 3
>>> # Observations
>>> obsDim = 1
>>> obsSize = 10
>>> y = [-9.50794871493506, -3.83296694500105, -2.44545713047953,
... 0.0803625289211318, 1.01898069723583, 0.661725805623086,
... -1.57581204592385, -2.95308465670895, -8.8878164296758,
... -13.0812290405651]
>>> y_obs = ot.NumericalSample(y, obsDim)
>>> # Parameters
>>> p = ot.NumericalSample(obsSize, chainDim)
>>> for i in range(obsSize):
... for j in range(chainDim):
... p[i, j] = (-2 + 5. * i / 9.) ** j
>>> # Model
>>> fullModel = ot.NumericalMathFunction(
... ['p1', 'p2', 'p3', 'x1', 'x2', 'x3'], ['z', 'sigma'],
... ['p1*x1+p2*x2+p3*x3', '1.0'])
>>> model = ot.NumericalMathFunction(fullModel, range(chainDim))
>>> # Calibration parameters
>>> calibrationColl = [ot.CalibrationStrategy()]*chainDim
>>> # Proposal distribution
>>> proposalColl = [ot.Uniform(-1., 1.)]*chainDim
>>> # Prior distribution
>>> sigma0 = [10.]*chainDim
>>> # Covariance matrix
>>> Q0_inv = ot.CorrelationMatrix(chainDim)
>>> for i in range(chainDim):
... Q0_inv[i, i] = sigma0[i] * sigma0[i]
>>> mu0 = [0.]*chainDim
>>> # x0 ~ N(mu0, sigma0)
>>> prior = ot.Normal(mu0, Q0_inv)
>>> # Conditional distribution y~N(z, 1.0)
>>> conditional = ot.Normal()
>>> # Create a metropolis-hastings sampler
>>> # prior =a distribution of dimension chainDim, the a priori distribution of the parameter
>>> # conditional =a distribution of dimension 1, the observation error on the output
>>> # model =the link between the parameters and the output
>>> # y_obs =noisy observations of the output
>>> # mu0 =starting point of the chain
>>> sampler = ot.RandomWalkMetropolisHastings(
... prior, conditional, model, p, y_obs, mu0, proposalColl)
>>> sampler.setCalibrationStrategyPerComponent(calibrationColl)
>>> sampler.setBurnIn(2000)
>>> sampler.setThinning(100)
>>> # Get a realization
>>> print(sampler.getRealization())
[1.25054,1.32356,-2.15476]"
// ---------------------------------------------------------------------
%feature("docstring") OT::RandomWalkMetropolisHastings::getAcceptanceRate
"Get acceptance rate.
Returns
-------
acceptanceRate : :class:`~openturns.NumericalPoint` of dimension :math:`d`
Sequence whose the :math:`j^{th}` component corresponds to the acceptance
rate of the candidates :math:`\\\\vect{c}^k` obtained from a state
:math:`\\\\vect{\\\\theta}^k` by only changing its :math:`j^{th}` component, that
is to the acceptance rate only relative to the :math:`k^{th}` MCMC
iterations such that :math:`k \\\\mod d=j` (see the paragraph dedicated to the
constructors of the class above). These are global acceptance rates over
all the MCMC iterations performed."
// ---------------------------------------------------------------------
%feature("docstring") OT::RandomWalkMetropolisHastings::getCalibrationStrategyPerComponent
"Get the calibration strategy per component.
Returns
-------
strategy : list of :class:`~openturns.CalibrationStrategy`
A list of CalibrationStrategy *strategy*, whose :math:`j^{th}` component
:math:`strategy[j]` defines whether and how the :math:`\\\\lambda_j^k` (see the
paragraph dedicated to the constructors of the class above) are rescaled,
on the basis of the last :math:`j^{th}` component acceptance rate
:math:`\\\\rho_j^k` . The *calibration* coefficients are rescaled every
:math:`q\\\\times d` MCMC iterations with
:math:`q = strategy[j].getCalibrationStep()`, thus on the basis of the
acceptances or refusals of the last :math:`q` candidates obtained by only
changing the :math:`j^{th}` component of the current state:
:math:`\\\\lambda_j^k = \\\\Phi_j (\\\\rho_j^k)\\\\lambda_j^{k-qd}` where
:math:`\\\\Phi_j(.)` is defined by :math:`strategy[j].computeUpdateFactor()`."
// ---------------------------------------------------------------------
%feature("docstring") OT::RandomWalkMetropolisHastings::setCalibrationStrategyPerComponent
"Set the calibration strategy per component.
Parameters
----------
strategy : list of :class:`~openturns.CalibrationStrategy`
A list of CalibrationStrategy *strategy*, whose :math:`j^{th}` component
:math:`strategy[j]` defines whether and how the :math:`\\\\lambda_j^k` (see the
paragraph dedicated to the constructors of the class above) are rescaled,
on the basis of the last :math:`j^{th}` component acceptance rate
:math:`\\\\rho_j^k` . The *calibration* coefficients are rescaled every
:math:`q\\\\times d` MCMC iterations with
:math:`q = strategy[j].getCalibrationStep()`, thus on the basis of the
acceptances or refusals of the last :math:`q` candidates obtained by only
changing the :math:`j^{th}` component of the current state:
:math:`\\\\lambda_j^k = \\\\Phi_j (\\\\rho_j^k)\\\\lambda_j^{k-qd}` where
:math:`\\\\Phi_j(.)` is defined by :math:`strategy[j].computeUpdateFactor()`."
// ---------------------------------------------------------------------
%feature("docstring") OT::RandomWalkMetropolisHastings::setCalibrationStrategy
"Set the calibration strategy.
Parameters
----------
strategy : :class:`~openturns.CalibrationStrategy`
Same strategy applied for each component :math:`\\\\lambda_j^k`.
See also
--------
setCalibrationStrategyPerComponent"
// ---------------------------------------------------------------------
%feature("docstring") OT::RandomWalkMetropolisHastings::getProposal
"Get the proposal.
Returns
-------
proposal : list of :class:`~openturns.Distribution`
The :math:`d`-tuple of Distributions :math:`p_j (1 \\\\leq j \\\\leq d)` from
which the transition kernels of the random walk Metropolis-Hastings
algorithm are defined; look at the paragraph dedicated to the constructors
of the class above."
// ---------------------------------------------------------------------
%feature("docstring") OT::RandomWalkMetropolisHastings::setProposal
"Set the proposal.
Parameters
----------
proposal : list of :class:`~openturns.Distribution`
The :math:`d`-tuple of Distributions :math:`p_j (1 \\\\leq j \\\\leq d)` from
which the transition kernels of the random walk Metropolis-Hastings
algorithm are defined; look at the paragraph dedicated to the constructors
of the class above."
|