This file is indexed.

/usr/include/openturns/swig/Student_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
%feature("docstring") OT::Student
"Student distribution.

Available constructors:
    Student(*nu=3.0, d=1*)

    Student(*nu, mu, sigma=1.0*)

    Student(*nu, mu, sigma, R*)

Parameters
----------
d : int, :math:`d \\\\geq 1`
    Dimension.
nu : float, :math:`\\\\nu > 0`
    Generalised number degrees of freedom.
mu : float :math:`\\\\mu`, sequence of float, :math:`\\\\vect{\\\\mu} \\\\in \\\\Rset^d`, optional
    If :math:`\\\\nu > 1`: mean.

    If :math:`\\\\nu = 1`: location parameter.

    Default is :math:`\\\\vect{\\\\mu} = (0, \\\\dots, 0) \\\\in \\\\Rset^d`.
sigma : float :math:`\\\\sigma`, sequence of float, :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^{*d}_+`, optional
    Scale parameter.

    Default is :math:`\\\\vect{\\\\sigma} = (1, \\\\dots, 1) \\\\in \\\\Rset^d`.
R : :class:`~openturns.CorrelationMatrix` :math:`\\\\mat{R} \\\\in \\\\Rset^d \\\\times \\\\Rset^d`, optional
    If :math:`\\\\nu > 2`: correlation matrix.

    If :math:`\\\\nu \\\\leq 2`: generalized correlation matrix.

    Default is :math:`\\\\mat{R} = I_d \\\\in \\\\Rset^d \\\\times \\\\Rset^d`.

Notes
-----
Its probability density function is defined as:

.. math::

    f_X(x) = \\\\frac{\\\\Gamma \\\\left(\\\\frac{\\\\nu + d}{2}\\\\right)}
                  {(\\\\pi \\\\nu) ^ {\\\\frac{d}{2}} \\\\Gamma \\\\left(\\\\frac{\\\\nu}{2}\\\\right)}
             \\\\frac{\\\\left| \\\\mathrm{det}(\\\\mat{R}) \\\\right| ^ {-1/2}}
                  {\\\\prod_{k = 1} ^ d \\\\sigma_k}
             \\\\left(1 + \\\\frac{\\\\vect{z} ^ t \\\\mat{R} ^ {-1} \\\\vect{z}}{\\\\nu}
             \\\\right) ^ {-\\\\frac{\\\\nu + d}{2}}, \\\\quad x \\\\in \\\\Rset

with :math:`\\\\nu > 0, d \\\\geq 1, \\\\mat{R} \\\\in \\\\Rset^d \\\\times \\\\Rset^d,
\\\\sigma_k > 0, k=1, \\\\dots, d` .

where :math:`\\\\vect{z}=\\\\mat{\\\\Delta}^{-1}\\\\left(\\\\vect{x}-\\\\vect{\\\\mu}\\\\right)`, 
:math:`\\\\mat{\\\\Delta} = \\\\mat{\\\\mathrm{diag}}(\\\\vect{\\\\sigma})` and :math:`\\\\Gamma`
denotes Euler's Gamma function :class:`~openturns.SpecFunc_Gamma`.

Its first moments are:

.. math::
    :nowrap:

    \\\\begin{eqnarray*}
        \\\\vect{\\\\Expect{X}} & = & \\\\vect{\\\\mu} \\\\quad \\\\text{ if }\\\\nu>1\\\\\\\\
        \\\\mat{\\\\Cov{X}} & = & \\\\displaystyle \\\\frac{\\\\nu}{\\\\nu-2}
                            \\\\Tr{\\\\mat{\\\\Delta}}\\\\,\\\\mat{R}\\\\,\\\\mat{\\\\Delta}
                          \\\\quad \\\\text{ if }\\\\nu>2
    \\\\end{eqnarray*}

Examples
--------
Create a distribution:

>>> import openturns as ot
>>> distribution = ot.Student(5.0, -0.5, 2.0)

Draw a sample:

>>> sample = distribution.getSample(10)"

// ---------------------------------------------------------------------

%feature("docstring") OT::Student::getMu
"Accessor to the distribution's mean.

Returns
-------
mu : float
    Mean.
    Only defined when the dimension is 1
    (else, use the :func:`getMean()` method inherited from the
    EllipticalDistribution class)."

// ---------------------------------------------------------------------

%feature("docstring") OT::Student::getNu
"Accessor to the distribution's generalised number degrees of freedom.

Returns
-------
nu : float
    Generalised number degrees of freedom."

// ---------------------------------------------------------------------

%feature("docstring") OT::Student::setMu
"Accessor to the distribution's mean.

Parameters
----------
mu : float
    Mean."

// ---------------------------------------------------------------------

%feature("docstring") OT::Student::setNu
"Accessor to the distribution's generalised number degrees of freedom.

Parameters
----------
nu : float, :math:`\\\\nu > 0`
    Generalised number degrees of freedom."