This file is indexed.

/usr/include/openturns/swig/UniVariatePolynomialImplementation_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
%define OT_UniVariatePolynomial_doc
"Base class for univariate polynomials.

Parameters
----------
coefficients : sequence of float
    Polynomial coefficients in increasing polynomial order.

Examples
--------
>>> import openturns as ot

Create a univariate polynomial from a list of coefficients:

>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> print(P)
1 + 2 * X + 3 * X^2

Univariate polynomials are of course callable:

>>> print(P(1.))
6.0

Addition, subtraction and multiplication of univariate polynomials:

>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> Q = ot.UniVariatePolynomial([1., 2.])
>>> print('(%s) + (%s) = %s' % (P, Q, P + Q))
(1 + 2 * X + 3 * X^2) + (1 + 2 * X) = 2 + 4 * X + 3 * X^2
>>> print('(%s) - (%s) = %s' % (P, Q, P - Q))
(1 + 2 * X + 3 * X^2) - (1 + 2 * X) = 3 * X^2
>>> print('(%s) * (%s) = %s' % (P, Q, P * Q))
(1 + 2 * X + 3 * X^2) * (1 + 2 * X) = 1 + 4 * X + 7 * X^2 + 6 * X^3"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation
OT_UniVariatePolynomial_doc

// ---------------------------------------------------------------------

%define OT_UniVariatePolynomial_derivate_doc
"Build the first-order derivative polynomial.

Returns
-------
derivated_polynomial : :class:`~openturns.Univariate`
    The first-order derivated polynomial.

Examples
--------
>>> import openturns as ot
>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> print(P.derivate())
2 + 6 * X"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation::derivate
OT_UniVariatePolynomial_derivate_doc

// ---------------------------------------------------------------------

%define OT_UniVariatePolynomial_derivative_doc
"Compute the first-order derivative polynomial at point :math:`x`.

Parameters
----------
x : float
    Polynomial input.

Returns
-------
derivative_value : float
    The value of the polynomial's first-order derivative at point :math:`x`.

Examples
--------
>>> import openturns as ot
>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> print(P.derivative(1.))
8.0"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation::derivative
OT_UniVariatePolynomial_derivative_doc

// ---------------------------------------------------------------------

%define OT_UniVariatePolynomial_draw_doc
"Draw the polynomial.

Parameters
----------
x_min : float, optional
    The starting value that is used for meshing the x-axis.
x_max : float, optional, :math:`x_{\\\\max} > x_{\\\\min}`
    The ending value that is used for meshing the x-axis.
n_points : int, optional
    The number of points that is used for meshing the x-axis.

Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> P = ot.UniVariatePolynomial([1., 2., -3., 5.])
>>> View(P.draw(-10., 10., 100)).show()"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation::draw
OT_UniVariatePolynomial_draw_doc

// ---------------------------------------------------------------------

%define OT_UniVariatePolynomial_getCoefficients_doc
"Accessor to the polynomials's coefficients.

Returns
-------
coefficients : :class:`~openturns.NumericalPoint`
    Polynomial coefficients in increasing polynomial order.

See Also
--------
setCoefficients

Examples
--------
>>> import openturns as ot
>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> print(P.getCoefficients())
[1,2,3]"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation::getCoefficients
OT_UniVariatePolynomial_getCoefficients_doc

// ---------------------------------------------------------------------

%define OT_UniVariatePolynomial_getDegree_doc
"Accessor to the polynomials's degree.

Returns
-------
degree : int
    Polynomial's degree.

Examples
--------
>>> import openturns as ot
>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> print(P.getDegree())
2"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation::getDegree
OT_UniVariatePolynomial_getDegree_doc

// ---------------------------------------------------------------------

%define OT_UniVariatePolynomial_getRoots_doc
"Compute the roots of the polynomial.

Returns
-------
roots : list of complex values
    Polynomial's roots.

Examples
--------
>>> import openturns as ot
>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> print(P.getRoots())
[(-0.333333,0.471405),(-0.333333,-0.471405)]"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation::getRoots
OT_UniVariatePolynomial_getRoots_doc

// ---------------------------------------------------------------------

%define OT_UniVariatePolynomial_incrementDegree_doc
"Multiply the polynomial by :math:`x^k`.

Parameters
----------
degree : int, optional
    The incremented degree :math:`k`.
    Default uses :math:`k = 1`.

Returns
-------
incremented_degree_polynomial : :class:`~openturns.UniVariatePolynomial`
    Polynomial with incremented degree.

Examples
--------
>>> import openturns as ot
>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> print(P.incrementDegree())
X + 2 * X^2 + 3 * X^3
>>> print(P.incrementDegree(2))
X^2 + 2 * X^3 + 3 * X^4"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation::incrementDegree
OT_UniVariatePolynomial_incrementDegree_doc

// ---------------------------------------------------------------------

%define OT_UniVariatePolynomial_setCoefficients_doc
"Accessor to the polynomials's coefficients.

Parameters
----------
coefficients : sequence of float
    Polynomial coefficients in increasing polynomial order.

See Also
--------
getCoefficients

Examples
--------
>>> import openturns as ot
>>> P = ot.UniVariatePolynomial([1., 2., 3.])
>>> P.setCoefficients([4., 2., 1.])
>>> print(P)
4 + 2 * X + X^2"
%enddef
%feature("docstring") OT::UniVariatePolynomialImplementation::setCoefficients
OT_UniVariatePolynomial_setCoefficients_doc